Federated Causal Discovery From Interventions
- URL: http://arxiv.org/abs/2211.03846v4
- Date: Sun, 11 Feb 2024 05:18:01 GMT
- Title: Federated Causal Discovery From Interventions
- Authors: Amin Abyaneh, Nino Scherrer, Patrick Schwab, Stefan Bauer, Bernhard
Sch\"olkopf, Arash Mehrjou
- Abstract summary: We propose FedCDI, a framework for inferring causal structures from distributed data containing interventional samples.
In line with the federated learning framework, FedCDI improves privacy by exchanging belief updates rather than raw samples.
- Score: 35.53403074610876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery serves a pivotal role in mitigating model uncertainty
through recovering the underlying causal mechanisms among variables. In many
practical domains, such as healthcare, access to the data gathered by
individual entities is limited, primarily for privacy and regulatory
constraints. However, the majority of existing causal discovery methods require
the data to be available in a centralized location. In response, researchers
have introduced federated causal discovery. While previous federated methods
consider distributed observational data, the integration of interventional data
remains largely unexplored. We propose FedCDI, a federated framework for
inferring causal structures from distributed data containing interventional
samples. In line with the federated learning framework, FedCDI improves privacy
by exchanging belief updates rather than raw samples. Additionally, it
introduces a novel intervention-aware method for aggregating individual
updates. We analyze scenarios with shared or disjoint intervened covariates,
and mitigate the adverse effects of interventional data heterogeneity. The
performance and scalability of FedCDI is rigorously tested across a variety of
synthetic and real-world graphs.
Related papers
- Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
We show that datasets containing interventional data can be effectively extracted under realistic assumptions about the data distribution.
We introduce interventional faithfulness, which relies on comparisons between the marginal distributions of each variable across observational and interventional settings.
We also introduce Intersort, an algorithm designed to infer the causal order from datasets containing large numbers of single-variable interventions.
arXiv Detail & Related papers (2024-05-28T16:07:17Z) - DAGnosis: Localized Identification of Data Inconsistencies using
Structures [73.39285449012255]
Identification and appropriate handling of inconsistencies in data at deployment time is crucial to reliably use machine learning models.
We use directed acyclic graphs (DAGs) to encode the training set's features probability distribution and independencies as a structure.
Our method, called DAGnosis, leverages these structural interactions to bring valuable and insightful data-centric conclusions.
arXiv Detail & Related papers (2024-02-26T11:29:16Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
We propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data.
These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy.
We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method.
arXiv Detail & Related papers (2024-02-20T18:53:53Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
In this work, we propose a novel Gradient-based Intervention Targeting method, abbreviated GIT.
GIT 'trusts' the gradient estimator of a gradient-based causal discovery framework to provide signals for the intervention acquisition function.
We provide extensive experiments in simulated and real-world datasets and demonstrate that GIT performs on par with competitive baselines.
arXiv Detail & Related papers (2022-11-24T17:04:45Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
arXiv Detail & Related papers (2022-03-04T14:21:28Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Federated Estimation of Causal Effects from Observational Data [19.657789891394504]
We present a novel framework for causal inference with federated data sources.
We assess and integrate local causal effects from different private data sources without centralizing them.
arXiv Detail & Related papers (2021-05-31T08:06:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.