Improving the Quantum Approximate Optimization Algorithm with
postselection
- URL: http://arxiv.org/abs/2011.05425v1
- Date: Tue, 10 Nov 2020 22:17:50 GMT
- Title: Improving the Quantum Approximate Optimization Algorithm with
postselection
- Authors: Sami Boulebnane
- Abstract summary: Combinatorial optimization is among the main applications envisioned for near-term and fault-tolerant quantum computers.
We consider a well-studied quantum algorithm for optimization: the Quantum Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on 3-regular graphs.
We derive theoretical upper and lower bounds showing that a constant (though small) increase of the fraction of satisfied edges is indeed achievable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combinatorial optimization is among the main applications envisioned for
near-term and fault-tolerant quantum computers. In this work, we consider a
well-studied quantum algorithm for combinatorial optimization: the Quantum
Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on
3-regular graphs. We explore the idea of improving the solutions returned by
the simplest version of the algorithm (depth-1 QAOA) using a form of
postselection that can be efficiently simulated by state preparation. We derive
theoretical upper and lower bounds showing that a constant (though small)
increase of the fraction of satisfied edges is indeed achievable. Numerical
experiments on large problem instances (beyond classical simulatability)
complement and support our bounds. We also consider a distinct technique: local
updates, which can be applied not only to QAOA but any optimization algorithm.
In the case of QAOA, the resulting improvement can be sharply quantified
theoretically for large problem instances and in absence of postselection.
Combining postselection and local updates, the theory is no longer tractable
but numerical evidence suggests that improvements from both methods can be
combined.
Related papers
- Enhancing Quantum Algorithms for Quadratic Unconstrained Binary Optimization via Integer Programming [0.0]
In this work, we integrate the potentials of quantum and classical techniques for optimization.
We reduce the problem size according to a linear relaxation such that the reduced problem can be handled by quantum machines of limited size.
We present numerous computational results from real quantum hardware.
arXiv Detail & Related papers (2023-02-10T20:12:53Z) - Ising formulation of integer optimization problems for utilizing quantum
annealing in iterative improvement strategy [1.14219428942199]
We propose an Ising formulation of integer optimization problems to utilize quantum annealing in the iterative improvement strategy.
We analytically show that a first-order phase transition is successfully avoided for a fully connected ferro Potts model if the overlap between a ground state and a candidate solution exceeds a threshold.
arXiv Detail & Related papers (2022-11-08T02:12:49Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization [0.0]
We present a Gauss-Newton based quantum algorithm (GNQA) for optimization problems that, under optimal conditions, rapidly converge towards one of the optimal solutions without being trapped in local minima or plateaus.
Our approach mitigates those by employing a tensor product state that accurately represents the optimal solution, and an appropriate function for the Hamiltonian, containing all the combinations of binary variables.
Numerical experiments presented here demonstrate the effectiveness of our approach, and they show that GNQA outperforms other optimization methods in both convergence properties and accuracy for all problems considered here.
arXiv Detail & Related papers (2022-03-25T23:49:31Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Warm-starting quantum optimization [6.832341432995627]
We discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of an optimization problem.
This allows the quantum algorithm to inherit the performance guarantees of the classical algorithm.
It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.
arXiv Detail & Related papers (2020-09-21T18:00:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - An adaptive quantum approximate optimization algorithm for solving
combinatorial problems on a quantum computer [0.0]
The quantum approximate optimization algorithm (QAOA) is a hybrid variational quantum-classical algorithm that solves optimization problems.
We develop an iterative version of QAOA that is problem-tailored, and which can also be adapted to specific hardware constraints.
We simulate the algorithm on a class of Max-Cut graph problems and show that it converges much faster than the standard QAOA.
arXiv Detail & Related papers (2020-05-20T18:00:01Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.