Generating counterfactual explanations of tumor spatial proteomes to
discover effective strategies for enhancing immune infiltration
- URL: http://arxiv.org/abs/2211.04020v2
- Date: Sat, 14 Oct 2023 01:56:35 GMT
- Title: Generating counterfactual explanations of tumor spatial proteomes to
discover effective strategies for enhancing immune infiltration
- Authors: Zitong Jerry Wang, Alexander M. Xu, Aman Bhargava, Matt W. Thomson
- Abstract summary: The tumor microenvironment (TME) significantly impacts cancer prognosis due to its immune composition.
Here, we formulate T-cell infiltration prediction as a self-supervised machine learning problem.
We apply our framework to melanoma, colorectal cancer liver metastases, and breast tumor data, discovering perturbations predicted to support T-cell infiltration.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The tumor microenvironment (TME) significantly impacts cancer prognosis due
to its immune composition. While therapies for altering the immune composition,
including immunotherapies, have shown exciting results for treating
hematological cancers, they are less effective for immunologically-cold, solid
tumors. Spatial omics technologies capture the spatial organization of the TME
with unprecedented molecular detail, revealing the relationship between immune
cell localization and molecular signals. Here, we formulate T-cell infiltration
prediction as a self-supervised machine learning problem and develop a
counterfactual optimization strategy that leverages large scale spatial omics
profiles of patient tumors to design tumor perturbations predicted to boost
T-cell infiltration. A convolutional neural network predicts T-cell
distribution based on signaling molecules in the TME provided by imaging mass
cytometry. Gradient-based counterfactual generation, then, computes
perturbations predicted to boost T-cell abundance. We apply our framework to
melanoma, colorectal cancer liver metastases, and breast tumor data,
discovering combinatorial perturbations predicted to support T-cell
infiltration across tens to hundreds of patients. This work presents a paradigm
for counterfactual-based prediction and design of cancer therapeutics using
spatial omics data.
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Cross-domain feature disentanglement for interpretable modeling of tumor
microenvironment impact on drug response [4.930226504666259]
We propose a domain adaptation network for disentanglement to separate representations of cancer cells and TME of a tumor in patients.
To ensure generalizability to novel drugs, we applied a graph attention network to learn the latent representation of drugs, allowing us to linearly model the drug perturbation on cellular state in latent space.
arXiv Detail & Related papers (2023-11-15T07:50:54Z) - Treatment-aware Diffusion Probabilistic Model for Longitudinal MRI
Generation and Diffuse Glioma Growth Prediction [0.5806504980491878]
We present a novel end-to-end network capable of generating future tumor masks and realistic MRIs of how the tumor will look at any future time points.
Our approach is based on cutting-edge diffusion probabilistic models and deep-segmentation neural networks.
arXiv Detail & Related papers (2023-09-11T12:12:52Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Novel Local Radiomic Bayesian Classifiers for Non-Invasive Prediction of
MGMT Methylation Status in Glioblastoma [0.0]
Expression of the O6-methylguanine-DNA-methyltransferase (MGMT) gene in glioblastoma tumor tissue is of clinical importance.
Currently, MGMT methylation is determined through an invasive brain biopsy and subsequent genetic analysis of the extracted tumor tissue.
We present novel Bayesian classifiers that make probabilistic predictions of MGMT methylation status based on radiomic features extracted from FLAIR-sequence magnetic resonance imagery (MRIs)
arXiv Detail & Related papers (2021-11-30T04:53:23Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Radiomic Deformation and Textural Heterogeneity (R-DepTH) Descriptor to
characterize Tumor Field Effect: Application to Survival Prediction in
Glioblastoma [2.1916334019121537]
The concept of tumor field effect implies that cancer is a systemic disease with its impact way beyond the visible tumor confines.
We present an integrated MRI-based descriptor, radiomic-Deformation and Textural Heterogeneity (r-DepTH)
This descriptor comprises measurements of the subtle perturbations in tissue deformations throughout the surrounding normal parenchyma due to mass effect.
arXiv Detail & Related papers (2021-03-12T17:38:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.