論文の概要: Spiking sampling network for image sparse representation and dynamic
vision sensor data compression
- arxiv url: http://arxiv.org/abs/2211.04166v1
- Date: Tue, 8 Nov 2022 11:11:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 15:45:28.192675
- Title: Spiking sampling network for image sparse representation and dynamic
vision sensor data compression
- Title(参考訳): 画像スパース表現と動的視覚センサデータ圧縮のためのスパイクサンプリングネットワーク
- Authors: Chunming Jiang, Yilei Zhang
- Abstract要約: スパース表現は、ストレージのリソースを大幅に節約し、低次元空間におけるデータの代表的な特徴を見つけることができるため、大きな注目を集めている。
本稿では,スパイクサンプリングネットワークを提案する。
このネットワークはスパイクニューロンで構成されており、どのピクセルポイントを保持すべきか、どのピクセルポイントを入力に応じてマスクする必要があるのかを動的に決定することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse representation has attracted great attention because it can greatly
save storage re- sources and find representative features of data in a
low-dimensional space. As a result, it may be widely applied in engineering
domains including feature extraction, compressed sensing, signal denoising,
picture clustering, and dictionary learning, just to name a few. In this paper,
we propose a spiking sampling network. This network is composed of spiking
neurons, and it can dynamically decide which pixel points should be retained
and which ones need to be masked according to the input. Our experiments
demonstrate that this approach enables better sparse representation of the
original image and facilitates image reconstruction compared to random
sampling. We thus use this approach for compressing massive data from the
dynamic vision sensor, which greatly reduces the storage requirements for event
data.
- Abstract(参考訳): スパース表現は、ストレージのリソースを大幅に節約し、低次元空間におけるデータの代表的な特徴を見つけることができるため、大きな注目を集めている。
その結果, 特徴抽出, 圧縮センシング, 信号雑音化, 画像クラスタリング, 辞書学習など, 工学領域に広く適用できる可能性が示唆された。
本稿では,スパイクサンプリングネットワークを提案する。
このネットワークはスパイクニューロンで構成されており、どのピクセルポイントを保持すべきか、どのピクセルポイントを入力に応じてマスクする必要があるかを動的に決定することができる。
実験により,本手法により画像のスパース表現が向上し,ランダムサンプリングに比べて画像再構成が容易になることを示す。
そこで本稿では,動的視覚センサから大量のデータを圧縮する手法を用いて,イベントデータの保存要求を大幅に低減する。
関連論文リスト
- Streaming Neural Images [56.41827271721955]
Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
論文 参考訳(メタデータ) (2024-09-25T17:51:20Z) - SHACIRA: Scalable HAsh-grid Compression for Implicit Neural
Representations [46.01969382873856]
Inlicit Neural Representation (INR)やNeural Fieldは、マルチメディア信号をエンコードする一般的なフレームワークとして登場した。
本稿では,これらの特徴グリッドを,追加のホット後のプルーニング/量子化段階を伴わずに圧縮するフレームワークであるSHACIRAを提案する。
我々のアプローチは、大規模なデータセットやドメイン固有のものを必要としない既存のINRアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-09-27T17:59:48Z) - Beyond Learned Metadata-based Raw Image Reconstruction [86.1667769209103]
生画像は、線形性や微細な量子化レベルなど、sRGB画像に対して明確な利点がある。
ストレージの要求が大きいため、一般ユーザからは広く採用されていない。
本稿では,メタデータとして,潜在空間におけるコンパクトな表現を学習する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-21T06:59:07Z) - Compression with Bayesian Implicit Neural Representations [16.593537431810237]
本稿では,データに変分ニューラルネットワークをオーバーフィッティングし,相対エントロピー符号化を用いて近似後重みサンプルを圧縮し,量子化やエントロピー符号化を行う。
実験により,本手法は単純さを維持しつつ,画像および音声の圧縮に強い性能を発揮することが示された。
論文 参考訳(メタデータ) (2023-05-30T16:29:52Z) - Raw Image Reconstruction with Learned Compact Metadata [61.62454853089346]
本稿では,メタデータとしての潜在空間におけるコンパクトな表現をエンドツーエンドで学習するための新しいフレームワークを提案する。
提案する生画像圧縮方式は,グローバルな視点から重要な画像領域に適応的により多くのビットを割り当てることができることを示す。
論文 参考訳(メタデータ) (2023-02-25T05:29:45Z) - Hyperspectral Image Compression Using Implicit Neural Representation [1.4721615285883425]
本稿では,暗黙的ニューラル表現を用いたハイパースペクトル画像圧縮法を提案する。
提案手法はJPEG,JPEG2000,PCA-DCTよりも低速で圧縮できることを示す。
論文 参考訳(メタデータ) (2023-02-08T15:27:00Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Deep data compression for approximate ultrasonic image formation [1.0266286487433585]
超音波イメージングシステムでは、別のコンピュータ装置でデータ取得と画像形成を行う。
ディープニューラルネットワークは、特定の画像形成方法の画質を維持するために最適化されている。
論文 参考訳(メタデータ) (2020-09-04T16:43:12Z) - Impression Space from Deep Template Network [72.86001835304185]
トレーニングされた畳み込みニューラルネットワークは、入力イメージを“記憶”する能力を持っていることを示す。
本稿では,既訓練の既訓練ネットワーク上でのEmphImpression Spaceを確立するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-10T15:29:33Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
スパース符号化に基づく画像復元モデルの堅牢性と効率に触発され,深部ネットワークにおけるニューロンの空間性について検討した。
本手法は,隠れたニューロンに対する空間的制約を構造的に強制する。
実験により、複数の画像復元タスクのためのディープニューラルネットワークではスパース表現が不可欠であることが示されている。
論文 参考訳(メタデータ) (2020-06-08T05:15:17Z) - Distributed Learning and Inference with Compressed Images [40.07509530656681]
本稿では,自律運転に対する視覚に基づく認識をパラダイムシナリオとして取り上げる。
生成逆ネットワーク(GAN)を用いた画像復元に基づくデータセット復元を提案する。
本手法は,特定の画像圧縮手法と下流タスクの両方に非依存である。
論文 参考訳(メタデータ) (2020-04-22T11:20:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。