論文の概要: Streaming Neural Images
- arxiv url: http://arxiv.org/abs/2409.17134v1
- Date: Wed, 25 Sep 2024 17:51:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 02:33:29.607597
- Title: Streaming Neural Images
- Title(参考訳): ニューラルネットワークのストリーム化
- Authors: Marcos V. Conde, Andy Bigos, Radu Timofte,
- Abstract要約: Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
- 参考スコア(独自算出の注目度): 56.41827271721955
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression. INRs offer unprecedented advantages in signal resolution and memory efficiency, enabling new possibilities for compression techniques. However, the existing limitations of INRs for image compression have not been sufficiently addressed in the literature. In this work, we explore the critical yet overlooked limiting factors of INRs, such as computational cost, unstable performance, and robustness. Through extensive experiments and empirical analysis, we provide a deeper and more nuanced understanding of implicit neural image compression methods such as Fourier Feature Networks and Siren. Our work also offers valuable insights for future research in this area.
- Abstract(参考訳): Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
INRは信号分解能とメモリ効率において前例のない利点を提供し、圧縮技術に新たな可能性をもたらす。
しかし、画像圧縮のためのINRの既存の制限は、文献では十分に対処されていない。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
広範にわたる実験と経験分析を通じて、フーリエ特徴ネットワークやサイレンのような暗黙的ニューラルネットワーク圧縮手法のより深く、よりニュアンスな理解を提供する。
私たちの研究は、この分野における将来の研究に貴重な洞察を与えています。
関連論文リスト
- Towards a Sampling Theory for Implicit Neural Representations [0.3222802562733786]
Inlicit Neural representations (INRs) は、コンピュータおよび計算画像における逆問題を解決する強力なツールとして登場した。
一般化された重み減衰正規化方式を用いて, 隠蔽層INRから画像の復元方法を示す。
低幅単層INRにより実現された正確な回復画像を得る確率を実証的に評価し、より現実的な連続領域ファントム画像の超解像回復におけるINRの性能を示す。
論文 参考訳(メタデータ) (2024-05-28T17:53:47Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - SINCO: A Novel structural regularizer for image compression using
implicit neural representations [10.251120382395332]
Inlicit Neural representations (INR) は、画像圧縮のためのディープラーニング(DL)ベースのソリューションとして最近提案されている。
本稿では、画像圧縮のための新しいINR法として、INR圧縮(SINCO)の構造正則化を提案する。
論文 参考訳(メタデータ) (2022-10-26T18:35:54Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。