論文の概要: Computational indistinguishability and boson sampling
- arxiv url: http://arxiv.org/abs/2211.04420v1
- Date: Tue, 8 Nov 2022 18:05:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 23:16:11.055624
- Title: Computational indistinguishability and boson sampling
- Title(参考訳): 計算的不明瞭性とボソンサンプリング
- Authors: Georgios M. Nikolopoulos
- Abstract要約: 理想の粗粒ボソンサンプリング器の出力と真の乱数生成器の出力とを区別する計算問題を導入する。
我々は、メッセージの暗号化や認証、エンティティ認証など、このようなスキームの実装のための暗号化設定を定義する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a computational problem of distinguishing between the output of
an ideal coarse-grained boson sampler and the output of a true random number
generator, as a resource for cryptographic schemes, which are secure against
computationally unbounded adversaries. Moreover, we define a cryptographic
setting for the implementation of such schemes, including message encryption
and authentication, as well as entity authentication.
- Abstract(参考訳): 本稿では,理想の粗いボソンサンプリング器の出力と真の乱数生成器の出力とを区別する計算問題を,計算不能な敵に対してセキュアな暗号スキームのリソースとして紹介する。
さらに,メッセージの暗号化や認証,エンティティ認証など,このようなスキームの実装のための暗号設定を定義する。
関連論文リスト
- Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
暗号化された計算は、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的同型暗号化はクラウドベースの計算サービスに自然に適合する。
本稿では,少なくとも2乗問題に対する信頼性の高い暗号化ソリューションにより,暗号化されたシステム識別サービスを提案する。
論文 参考訳(メタデータ) (2024-10-27T20:00:04Z) - Correcting Subverted Random Oracles [55.4766447972367]
簡単な構成は、少数の入力で元のものと矛盾する「反転」ランダムオラクルを、ランダム関数から微分不可能な対象に変換することができることを証明している。
この結果から, 暗号プリミティブの設計者は, 通常のクリプトグラフィ設定で, ランダムなオラクルを信頼できるブラックボックスとして使用することができる。
論文 参考訳(メタデータ) (2024-04-15T04:01:50Z) - Provably Secure Disambiguating Neural Linguistic Steganography [66.30965740387047]
サブワードに基づく言語モデルを使用する際に生じるセグメンテーションの曖昧さ問題は、時にはデコード障害を引き起こす。
そこで我々はSyncPoolという,セグメンテーションのあいまいさ問題に効果的に対処する,セキュアな曖昧さ回避手法を提案する。
SyncPoolは、候補プールのサイズやトークンの分布を変えないため、確実に安全な言語ステガノグラフィー手法に適用できる。
論文 参考訳(メタデータ) (2024-03-26T09:25:57Z) - Seedless Extractors for Device-Independent Quantum Cryptography [0.0]
デバイス非依存(DI)量子暗号は、基礎となる量子デバイスを最小限の信頼性で、あるいは特性化したセキュアな暗号を提供することを目的としている。
DIプロトコルにおける重要なステップはランダム性抽出(またはプライバシーの増幅)であり、これはプロトコル中に生成される任意のビットの十分なエントロピーと統計的独立性を持つ追加ビットのシードを持つことを要求する。
本研究では、シードを必要としないDIプロトコルにおける抽出法を導入し、計算的に非有界な量子対向に対して安全である。
論文 参考訳(メタデータ) (2024-03-07T18:07:52Z) - Generator Born from Classifier [66.56001246096002]
データサンプルに頼ることなく、イメージジェネレータを再構築することを目指している。
本稿では,ネットワークパラメータの収束条件を満たすために,ジェネレータを訓練する新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-12-05T03:41:17Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
本稿では,低速な計算ノードに対して堅牢で,線形演算の近似計算と精度の両立が可能な分散コンピューティングフレームワークを提案する。
本稿では,復号化のための計算複雑性を低く保ちながら,実数値データを扱うための逐次復号アルゴリズムを提案する。
大規模行列乗算やブラックボックス最適化など,様々な文脈において,このフレームワークの潜在的な応用を実証する。
論文 参考訳(メタデータ) (2023-09-01T18:02:04Z) - Encrypted Dynamic Control exploiting Limited Number of Multiplications and a Method using RLWE-based Cryptosystem [0.3749861135832073]
本稿では,ほとんどの同型暗号方式で実装可能な動的コントローラを暗号化する手法を提案する。
結果として、暗号化されたコントローラは、暗号化されたデータごとに、限られた数の同型乗算しか必要としない。
本稿では,Ring Learning With Errors(RLWE)ベースの暗号システムにおいて,メッセージのベクトルを1つの暗号文に暗号化する手法のカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-07-07T08:24:48Z) - Attributable and Scalable Opinion Summarization [79.87892048285819]
我々は、頻繁なエンコーディングを復号することで抽象的な要約を生成し、同じ頻繁なエンコーディングに割り当てられた文を選択して抽出的な要約を生成する。
本手法は,要約プロセスの一部として要約を生成するために使用される文を同定するため,帰属的手法である。
なぜなら、アグリゲーションはトークンの長いシーケンスではなく、潜在空間で実行されるからである。
論文 参考訳(メタデータ) (2023-05-19T11:30:37Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
ホモモルフィック暗号化は、機密データ上のクラウドで除算された計算のプライバシを保護するための有望なソリューションである。
本稿では,クラウドベースの同型計算のクライアント検証を実現するための2つの誤り検出符号化とビルド認証手法を提案する。
我々は,暗号化されたデータ上で実行されたアウトソース計算の検証システムであるVERITASにソリューションを実装した。
論文 参考訳(メタデータ) (2022-07-28T13:22:21Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z) - Batch norm with entropic regularization turns deterministic autoencoders
into generative models [14.65554816300632]
変分オートエンコーダはよく定義された深部生成モデルである。
本研究では、非決定論の情報源としてバッチ正規化を利用することで、決定論的オートエンコーダを生成モデルに変換するのに十分であることを示す。
論文 参考訳(メタデータ) (2020-02-25T02:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。