論文の概要: A Solution for a Fundamental Problem of 3D Inference based on 2D
Representations
- arxiv url: http://arxiv.org/abs/2211.04691v1
- Date: Wed, 9 Nov 2022 05:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 16:56:09.323929
- Title: A Solution for a Fundamental Problem of 3D Inference based on 2D
Representations
- Title(参考訳): 2次元表現に基づく3次元推論の基本問題の解法
- Authors: Thien An L. Nguyen
- Abstract要約: ニューラルネットワークを用いた単眼視からの3次元推論は、コンピュータビジョンの重要な研究領域である。
本稿では,問題の重要な特別な場合に対して,2次元表現に基づく説明可能で頑健な解を提供する。
2次元画像から3次元オブジェクトのポーズ推定に関連する問題を解くために,利用可能な情報に基づく学習手法を新たに導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D inference from monocular vision using neural networks is an important
research area of computer vision. Applications of the research area are various
with many proposed solutions and have shown remarkable performance. Although
many efforts have been invested, there are still unanswered questions, some of
which are fundamental. In this paper, I discuss a problem that I hope will come
to be known as a generalization of the Blind Perspective-n-Point (Blind PnP)
problem for object-driven 3D inference based on 2D representations. The vital
difference between the fundamental problem and the Blind PnP problem is that 3D
inference parameters in the fundamental problem are attached directly to 3D
points and the camera concept will be represented through the sharing of the
parameters of these points. By providing an explainable and robust
gradient-decent solution based on 2D representations for an important special
case of the problem, the paper opens up a new approach for using available
information-based learning methods to solve problems related to 3D object pose
estimation from 2D images.
- Abstract(参考訳): ニューラルネットワークを用いた単眼視からの3次元推論はコンピュータビジョンの重要な研究領域である。
研究分野の応用は多種多様であり、多くの提案された解決策があり、顕著な性能を示している。
多くの努力が投資されているが、未回答の質問がまだあるが、その一部は基本的なものである。
本稿では,Blind Perspective-n-Point (Blind PnP) 問題を2次元表現に基づくオブジェクト駆動型3次元推論の一般化として扱うことを期待する。
基本問題とブラインドPnP問題との重要な違いは、基本問題における3次元推論パラメータが直接3Dポイントにアタッチされ、カメラの概念がこれらのポイントのパラメータの共有によって表現されることである。
そこで本稿では,2次元画像から3次元物体のポーズ推定に関する問題を解くために,利用可能な情報に基づく学習手法を用いた新しい手法を提案する。
関連論文リスト
- On the Efficacy of 3D Point Cloud Reinforcement Learning [20.4424883945357]
私たちは、最も一般的な3D表現形式の一つである3Dポイントクラウドに注目しています。
我々は3DポイントクラウドRLの設計選択を体系的に検討し、様々なロボット操作と制御タスクのための堅牢なアルゴリズムの開発に繋がる。
エージェント・オブジェクト/オブジェクト・オブジェクトの関係エンコーディングが重要な要素である場合、3DポイントクラウドRLは2Dよりも大幅に優れることがわかった。
論文 参考訳(メタデータ) (2023-06-11T22:52:08Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
本稿では,1つの2次元キーポイント検出から3次元ポーズを再構築することに焦点を当てた。
我々は,市販の2D検出器から多種多様な3Dポーズを効果的にサンプリングするための,拡散に基づく新しいフレームワークを構築した。
我々は,広く採用されているHuman3.6MとHumanEva-Iデータセットについて評価を行った。
論文 参考訳(メタデータ) (2022-12-06T07:22:20Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z) - Perspective-1-Ellipsoid: Formulation, Analysis and Solutions of the
Camera Pose Estimation Problem from One Ellipse-Ellipsoid Correspondence [1.7188280334580193]
我々は,エリスポイド固有の理論的枠組みを導入し,ポーズ推定の文脈で有用性を示す。
提案手法により, 位置や方向のみの推定問題に対して, ポーズ推定問題を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-26T09:15:20Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
2次元キーポイント検出に基づく弱教師付き6次元オブジェクトポーズ推定手法を提案する。
提案手法は,最先端の完全教師付きアプローチと同等の性能を実現する。
論文 参考訳(メタデータ) (2022-03-07T16:23:47Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
本稿では,学習向きのみを用いて3次元ポーズを頑健に推定できる新しいPose Orientation Net(PONet)を提案する。
PONetは、局所的な画像証拠を利用して、これらの手足の3D方向を推定し、3Dポーズを復元する。
我々は,Human3.6M,MPII,MPI-INF-3DHP,3DPWを含む複数のデータセットについて評価を行った。
論文 参考訳(メタデータ) (2021-12-21T12:48:48Z) - Learning Stereopsis from Geometric Synthesis for 6D Object Pose
Estimation [11.999630902627864]
現在のモノクラーベース6Dオブジェクトポーズ推定法は、一般的にRGBDベースの手法よりも競争力の低い結果が得られる。
本稿では,短いベースライン2ビュー設定による3次元幾何体積に基づくポーズ推定手法を提案する。
実験により,本手法は最先端の単分子法よりも優れ,異なる物体やシーンにおいて堅牢であることが示された。
論文 参考訳(メタデータ) (2021-09-25T02:55:05Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Solving the Blind Perspective-n-Point Problem End-To-End With Robust
Differentiable Geometric Optimization [44.85008070868851]
Blind Perspective-n-Pointは、シーンに対するカメラの位置を推定する問題である。
本稿では,視覚幾何学的問題を効果的に解くための,最初の完全エンドツーエンドのトレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-29T06:35:45Z) - Learning 2D-3D Correspondences To Solve The Blind Perspective-n-Point
Problem [98.92148855291363]
本稿では、6-DoFの絶対カメラポーズ2D--3D対応を同時に解決するディープCNNモデルを提案する。
実データとシミュレーションデータの両方でテストした結果,本手法は既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-03-15T04:17:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。