論文の概要: Zebra: Deeply Integrating System-Level Provenance Search and Tracking
for Efficient Attack Investigation
- arxiv url: http://arxiv.org/abs/2211.05403v1
- Date: Thu, 10 Nov 2022 08:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-11-11 15:48:54.090670
- Title: Zebra: Deeply Integrating System-Level Provenance Search and Tracking
for Efficient Attack Investigation
- Title(参考訳): Zebra: 効果的な攻撃調査のためのシステムレベルプロヴァンス検索と追跡を深く統合する
- Authors: Xinyu Yang, Haoyuan Liu, Ziyu Wang, Peng Gao
- Abstract要約: 本稿では,攻撃パターン探索と因果依存性追跡を統合し,効果的な攻撃調査を行うシステムZebraを提案する。
Zebraは,(1)多種多様な検索・追跡分析を行うための表現的かつ簡潔なドメイン固有言語Tstl,(2)大量の監査データを効率的に実行するための最適化された言語実行エンジンを提供する。
- 参考スコア(独自算出の注目度): 17.51791844411799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: System auditing has emerged as a key approach for monitoring system call
events and investigating sophisticated attacks. Based on the collected audit
logs, research has proposed to search for attack patterns or track the causal
dependencies of system events to reveal the attack sequence. However, existing
approaches either cannot reveal long-range attack sequences or suffer from the
dependency explosion problem due to a lack of focus on attack-relevant parts,
and thus are insufficient for investigating complex attacks.
To bridge the gap, we propose Zebra, a system that synergistically integrates
attack pattern search and causal dependency tracking for efficient attack
investigation. With Zebra, security analysts can alternate between search and
tracking to reveal the entire attack sequence in a progressive, user-guided
manner, while mitigating the dependency explosion problem by prioritizing the
attack-relevant parts. To enable this, Zebra provides (1) an expressive and
concise domain-specific language, Tstl, for performing various types of search
and tracking analyses, and (2) an optimized language execution engine for
efficient execution over a big amount of auditing data. Evaluations on a broad
set of attack cases demonstrate the effectiveness of Zebra in facilitating a
timely attack investigation.
- Abstract(参考訳): システム監査は、システムコールイベントを監視し、高度な攻撃を調査するための重要なアプローチとして登場した。
収集した監査ログに基づいて、攻撃パターンを探索したり、システムイベントの因果関係を追跡して攻撃シーケンスを明らかにする研究が提案されている。
しかし、既存のアプローチでは、攻撃関連部品に焦点が当てられていないため、長距離攻撃シーケンスを明らかにしたり、依存爆発問題に苦しむことはできず、複雑な攻撃を調査するには不十分である。
そこで本研究では,攻撃パターン探索と因果依存性追跡を相乗的に統合したシステムであるzebraを提案する。
Zebraを使用することで、セキュリティアナリストは検索とトラッキングを交互に切り替えて、攻撃に関連する部分の優先順位付けによる依存性の爆発問題を軽減しつつ、攻撃シーケンス全体を明らかにすることができる。
これを実現するために、Zebraは(1)様々な種類の探索・追跡分析を行うための表現的で簡潔なドメイン固有言語Tstl、(2)大量の監査データを効率的に実行するための最適化された言語実行エンジンを提供する。
広範囲にわたる攻撃事例の評価は、時間的攻撃調査を容易にするゼブラの有効性を示している。
関連論文リスト
- Exploring Answer Set Programming for Provenance Graph-Based Cyber Threat Detection: A Novel Approach [4.302577059401172]
プロヴァンスグラフは、サイバーセキュリティにおけるシステムレベルのアクティビティを表現するのに有用なツールである。
本稿では, ASP を用いてプロファイランスグラフをモデル化・解析する手法を提案する。
論文 参考訳(メタデータ) (2025-01-24T14:57:27Z) - HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
我々は、新しい脆弱性、検索プロンプトハイジャック攻撃(HijackRAG)を明らかにする。
HijackRAGは、悪意のあるテキストを知識データベースに注入することで、攻撃者がRAGシステムの検索機構を操作できるようにする。
攻撃者の知識の異なるレベルに合わせたブラックボックスとホワイトボックスの攻撃戦略を提案する。
論文 参考訳(メタデータ) (2024-10-30T09:15:51Z) - Slot: Provenance-Driven APT Detection through Graph Reinforcement Learning [24.84110719035862]
先進的永続脅威(Advanced Persistent Threats、APT)は、長期にわたって検出されていない能力によって特徴づけられる高度なサイバー攻撃である。
本稿では,前駆グラフとグラフ強化学習に基づく高度なAPT検出手法であるSlotを提案する。
Slotの卓越した精度、効率、適応性、そしてAPT検出の堅牢性を示し、ほとんどのメトリクスは最先端の手法を超越している。
論文 参考訳(メタデータ) (2024-10-23T14:28:32Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - Corpus Poisoning via Approximate Greedy Gradient Descent [48.5847914481222]
本稿では,HotFlip法をベースとした高密度検索システムに対する新たな攻撃手法として,近似グレディ・グラディエント・Descentを提案する。
提案手法は,複数のデータセットと複数のレトリバーを用いて高い攻撃成功率を達成し,未知のクエリや新しいドメインに一般化可能であることを示す。
論文 参考訳(メタデータ) (2024-06-07T17:02:35Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - A Hierarchical Security Events Correlation Model for Real-time Cyber Threat Detection and Response [0.0]
我々は,侵入検知システムによって発行される警告数を減らすことを約束する,新しい階層的な事象相関モデルを開発した。
提案モデルでは、類似性とグラフベースの相関技術から特徴を最大限に活用して、どちらのアプローチも別途実現できないアンサンブル機能を実現する。
このモデルはDARPA 99 侵入検知セットで実験を行うという概念実証として実装されている。
論文 参考訳(メタデータ) (2023-12-02T20:07:40Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Investigative Pattern Detection Framework for Counterterrorism [0.09999629695552192]
自動ツールは、アナリストから応答するクエリに関する情報を抽出し、新しい情報を継続的にスキャンし、過去のイベントと統合し、出現する脅威について警告するために必要である。
我々は、調査パターン検出の課題に対処し、対テロ対策のための調査パターン検出フレームワーク(INSPECT)を開発する。
このフレームワークは、行動指標を特定する機械学習技術や、リスクプロファイルやグループを検出するグラフパターンマッチング技術を含む、多数のコンピューティングツールを統合している。
論文 参考訳(メタデータ) (2023-10-30T00:45:05Z) - Streamlining Attack Tree Generation: A Fragment-Based Approach [39.157069600312774]
本稿では,公開情報セキュリティデータベースの情報を活用した,フラグメントベースのアタックグラフ生成手法を提案する。
また,攻撃グラフ生成手法として,攻撃モデリングのためのドメイン固有言語を提案する。
論文 参考訳(メタデータ) (2023-10-01T12:41:38Z) - Kairos: Practical Intrusion Detection and Investigation using
Whole-system Provenance [4.101641763092759]
警告グラフは、システムの実行履歴を記述した構造化監査ログである。
証明に基づく侵入検知システム(PIDS)の開発を促進する4つの共通次元を同定する。
4次元のデシラタを同時に満足させる最初のPIDSであるKAIROSについて述べる。
論文 参考訳(メタデータ) (2023-08-09T16:04:55Z) - Object-fabrication Targeted Attack for Object Detection [54.10697546734503]
物体検出の敵攻撃は 標的攻撃と未標的攻撃を含む。
新たなオブジェクトファブリケーションターゲット攻撃モードは、特定のターゲットラベルを持つ追加の偽オブジェクトをファブリケートする検出器を誤解させる可能性がある。
論文 参考訳(メタデータ) (2022-12-13T08:42:39Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
本稿では,強化学習に基づく対話型レコメンデーションシステムにおける敵例の探索と攻撃検出を提案する。
まず、入力に摂動を加え、カジュアルな要因に介入することで、異なる種類の逆例を作成する。
そこで,本研究では,人工データに基づく深層学習に基づく分類器による潜在的攻撃を検出することにより,推薦システムを強化した。
論文 参考訳(メタデータ) (2021-12-02T04:12:24Z) - Unsupervised Anomaly Detectors to Detect Intrusions in the Current
Threat Landscape [0.11470070927586014]
本研究では,Isolation Forests,One-Class Support Vector Machines,Self-Organizing Mapsが侵入検知用よりも有効であることを示した。
不安定、分散、あるいは非可逆的行動による攻撃を、ファジング、ワーム、ボットネットなどによって検出することがより困難である点を詳述する。
論文 参考訳(メタデータ) (2020-12-21T14:06:58Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z) - Enabling Efficient Cyber Threat Hunting With Cyber Threat Intelligence [94.94833077653998]
ThreatRaptorは、オープンソースのCyber Threat Intelligence(OSCTI)を使用して、コンピュータシステムにおける脅威追跡を容易にするシステムである。
構造化されていないOSCTIテキストから構造化された脅威行動を抽出し、簡潔で表現力豊かなドメイン固有クエリ言語TBQLを使用して悪意のあるシステムアクティビティを探索する。
広範囲にわたる攻撃事例の評価は、現実的な脅威狩りにおけるThreatRaptorの精度と効率を実証している。
論文 参考訳(メタデータ) (2020-10-26T14:54:01Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。