Quantum Power Flows: From Theory to Practice
- URL: http://arxiv.org/abs/2211.05728v1
- Date: Thu, 10 Nov 2022 17:52:43 GMT
- Title: Quantum Power Flows: From Theory to Practice
- Authors: Junyu Liu, Han Zheng, Masanori Hanada, Kanav Setia, Dan Wu
- Abstract summary: We discuss applications of quantum computing algorithms toward state-of-the-art smart grid problems.
We suggest potential, exponential quantum speedup by the use of the Harrow-Hassidim-Lloyd (HHL) algorithms for sparse matrix inversions in power-flow problems.
- Score: 11.488074575735137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate change is becoming one of the greatest challenges to the sustainable
development of modern society. Renewable energies with low density greatly
complicate the online optimization and control processes, where modern advanced
computational technologies, specifically quantum computing, have significant
potential to help. In this paper, we discuss applications of quantum computing
algorithms toward state-of-the-art smart grid problems. We suggest potential,
exponential quantum speedup by the use of the Harrow-Hassidim-Lloyd (HHL)
algorithms for sparse matrix inversions in power-flow problems. However,
practical implementations of the algorithm are limited by the noise of quantum
circuits, the hardness of realizations of quantum random access memories
(QRAM), and the depth of the required quantum circuits. We benchmark the
hardware and software requirements from the state-of-the-art power-flow
algorithms, including QRAM requirements from hybrid phonon-transmon systems,
and explicit gate counting used in HHL for explicit realizations. We also
develop near-term algorithms of power flow by variational quantum circuits and
implement real experiments for 6 qubits with a truncated version of power
flows.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Enhancing variational quantum state diagonalization using reinforcement
learning techniques [1.583327010995414]
We tackle the problem of designing a very shallow quantum circuit, required in the quantum state diagonalization task.
We use a novel encoding method for the RL-state, a dense reward function, and an $epsilon$-greedy policy to achieve this.
We demonstrate that the circuits proposed by the reinforcement learning methods are shallower than the standard variational quantum state diagonalization algorithm.
arXiv Detail & Related papers (2023-06-19T17:59:04Z) - Quantum Computing for Power Flow Algorithms: Testing on real Quantum
Computers [0.0]
This paper goes beyond quantum computing simulations and performs an experimental application of Quantum Computing for power systems on a real quantum computer.
We use five different quantum computers, apply the HHL quantum algorithm, and examine the impact of current noisy quantum hardware on the accuracy and speed of an AC power flow algorithm.
arXiv Detail & Related papers (2022-04-29T11:53:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.