Variational Quantum Algorithms for Combinatorial Optimization
- URL: http://arxiv.org/abs/2407.06421v1
- Date: Mon, 8 Jul 2024 22:02:39 GMT
- Title: Variational Quantum Algorithms for Combinatorial Optimization
- Authors: Daniel F Perez-Ramirez,
- Abstract summary: Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
- Score: 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The promise of quantum computing to address complex problems requiring high computational resources has long been hindered by the intrinsic and demanding requirements of quantum hardware development. Nonetheless, the current state of quantum computing, denominated Noisy Intermediate-Scale Quantum (NISQ) era, has introduced algorithms and methods that are able to harness the computational power of current quantum computers with advantages over classical computers (referred to as quantum advantage). Achieving quantum advantage is of particular relevance for the combinatorial optimization domain, since it often implies solving an NP-Hard optimization problem. Moreover, combinatorial problems are highly relevant for practical application areas, such as operations research, or resource allocation problems. Among quantum computing methods, Variational Quantum Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems. This paper explores the current state and recent developments of VQAs, emphasizing their applicability to combinatorial optimization. We identify the Quantum Approximate Optimization Algorithm (QAOA) as the leading candidate for these problems. Furthermore, we implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes, demonstrating the potential and challenges of using VQAs in practical optimization tasks. We release our code, dataset and optimized circuit parameters under https://github.com/DanielFPerez/VQA-for-MaxCut.
Related papers
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
Portfolio Optimization (PO) is a financial problem aiming to maximize the net gains while minimizing the risks in a given investment portfolio.
We propose a novel scalable framework, denoted PO-QA, to investigate the variation of quantum parameters.
Our results provide effective insights into comprehending PO from the lens of Quantum Machine Learning.
arXiv Detail & Related papers (2024-07-29T10:26:28Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms for optimization problems.
Our approach leverages quantum resources to obtain information that is used in problem-specific classical reduction steps.
We use backtracking techniques to further improve the performance of the algorithm without increasing the requirements on the quantum hardware.
arXiv Detail & Related papers (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Information scrambling and entanglement in quantum approximate
optimization algorithm circuits [9.730534141168752]
Variational quantum algorithms are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era.
We study information scrambling and entanglement in QAOA circuits, respectively, and discover that for a harder problem, more quantum resource is required.
arXiv Detail & Related papers (2023-01-18T11:36:49Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.