Q-Fusion: Diffusing Quantum Circuits
- URL: http://arxiv.org/abs/2504.20794v1
- Date: Tue, 29 Apr 2025 14:10:10 GMT
- Title: Q-Fusion: Diffusing Quantum Circuits
- Authors: Collin Beaudoin, Swaroop Ghosh,
- Abstract summary: We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.<n>Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
- Score: 2.348041867134616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum computing holds great potential for solving socially relevant and computationally complex problems. Furthermore, quantum machine learning (QML) promises to rapidly improve our current machine learning capabilities. However, current noisy intermediate-scale quantum (NISQ) devices are constrained by limitations in the number of qubits and gate counts, which hinder their full capabilities. Furthermore, the design of quantum algorithms remains a laborious task, requiring significant domain expertise and time. Quantum Architecture Search (QAS) aims to streamline this process by automatically generating novel quantum circuits, reducing the need for manual intervention. In this paper, we propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits. This method contrasts with other approaches that utilize large language models (LLMs), reinforcement learning (RL), variational autoencoders (VAE), and similar techniques. Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
Related papers
- DeQompile: quantum circuit decompilation using genetic programming for explainable quantum architecture search [1.351147045576948]
We introduce a novel genetic programming-based decompiler framework for reverse-engineering high-level quantum algorithms.<n>The proposed approach is implemented in the open-source tool DeQompile.
arXiv Detail & Related papers (2025-04-11T07:23:14Z) - Reinforcement Learning for Quantum Circuit Design: Using Matrix Representations [23.341157852018377]
We present a generic MDP modeling and employ Q-learning and DQN algorithms for quantum circuit design.<n>By leveraging the power of deep reinforcement learning, we aim to provide an automatic and scalable approach over traditional hand-crafted methods.
arXiv Detail & Related papers (2025-01-27T21:17:58Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.<n>By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.<n>We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Architecture Search via Continual Reinforcement Learning [0.0]
This paper proposes a machine learning-based method to construct quantum circuit architectures.
We present the Probabilistic Policy Reuse with deep Q-learning (PPR-DQL) framework to tackle this circuit design challenge.
arXiv Detail & Related papers (2021-12-10T19:07:56Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.