Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
- URL: http://arxiv.org/abs/2211.05985v4
- Date: Wed, 10 Apr 2024 14:13:29 GMT
- Title: Using Persuasive Writing Strategies to Explain and Detect Health Misinformation
- Authors: Danial Kamali, Joseph Romain, Huiyi Liu, Wei Peng, Jingbo Meng, Parisa Kordjamshidi,
- Abstract summary: This research focuses on aiding the automatic identification of misinformation by analyzing the persuasive strategies employed in textual documents.
We introduce a novel annotation scheme encompassing common persuasive writing tactics to achieve our objective.
We provide a dataset on health misinformation, thoroughly annotated by experts utilizing our proposed scheme.
- Score: 15.748429583896232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, the spread of misinformation is a prominent problem in society. Our research focuses on aiding the automatic identification of misinformation by analyzing the persuasive strategies employed in textual documents. We introduce a novel annotation scheme encompassing common persuasive writing tactics to achieve our objective. Additionally, we provide a dataset on health misinformation, thoroughly annotated by experts utilizing our proposed scheme. Our contribution includes proposing a new task of annotating pieces of text with their persuasive writing strategy types. We evaluate fine-tuning and prompt-engineering techniques with pre-trained language models of the BERT family and the generative large language models of the GPT family using persuasive strategies as an additional source of information. We evaluate the effects of employing persuasive strategies as intermediate labels in the context of misinformation detection. Our results show that those strategies enhance accuracy and improve the explainability of misinformation detection models. The persuasive strategies can serve as valuable insights and explanations, enabling other models or even humans to make more informed decisions regarding the trustworthiness of the information.
Related papers
- PropaInsight: Toward Deeper Understanding of Propaganda in Terms of Techniques, Appeals, and Intent [71.20471076045916]
Propaganda plays a critical role in shaping public opinion and fueling disinformation.
Propainsight systematically dissects propaganda into techniques, arousal appeals, and underlying intent.
Propagaze combines human-annotated data with high-quality synthetic data.
arXiv Detail & Related papers (2024-09-19T06:28:18Z) - Analysis of Plan-based Retrieval for Grounded Text Generation [78.89478272104739]
hallucinations occur when a language model is given a generation task outside its parametric knowledge.
A common strategy to address this limitation is to infuse the language models with retrieval mechanisms.
We analyze how planning can be used to guide retrieval to further reduce the frequency of hallucinations.
arXiv Detail & Related papers (2024-08-20T02:19:35Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - GPT Assisted Annotation of Rhetorical and Linguistic Features for Interpretable Propaganda Technique Detection in News Text [1.2699007098398802]
This study codifies 22 rhetorical and linguistic features identified in literature related to the language of persuasion.
RhetAnn, a web application, was specifically designed to minimize an otherwise considerable mental effort.
A small set of annotated data was used to fine-tune GPT-3.5, a generative large language model (LLM), to annotate the remaining data.
arXiv Detail & Related papers (2024-07-16T15:15:39Z) - ClaimVer: Explainable Claim-Level Verification and Evidence Attribution of Text Through Knowledge Graphs [13.608282497568108]
ClaimVer is a human-centric framework tailored to meet users' informational and verification needs.
It highlights each claim, verifies it against a trusted knowledge graph, and provides succinct, clear explanations for each claim prediction.
arXiv Detail & Related papers (2024-03-12T17:07:53Z) - Detecting misinformation through Framing Theory: the Frame Element-based
Model [6.4618518529384765]
We focus on the nuanced manipulation of narrative frames - an under-explored area within the AI community.
We propose an innovative approach leveraging the power of pre-trained Large Language Models and deep neural networks to detect misinformation.
arXiv Detail & Related papers (2024-02-19T21:50:42Z) - Enhancing Argument Structure Extraction with Efficient Leverage of
Contextual Information [79.06082391992545]
We propose an Efficient Context-aware model (ECASE) that fully exploits contextual information.
We introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information.
Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-08T08:47:10Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
We introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions.
To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles.
In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies.
arXiv Detail & Related papers (2020-09-16T14:13:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.