A Cross-Domain Study of the Use of Persuasion Techniques in Online Disinformation
- URL: http://arxiv.org/abs/2412.15098v1
- Date: Thu, 19 Dec 2024 17:46:13 GMT
- Title: A Cross-Domain Study of the Use of Persuasion Techniques in Online Disinformation
- Authors: João A. Leite, Olesya Razuvayevskaya, Carolina Scarton, Kalina Bontcheva,
- Abstract summary: This study employs a state-of-the-art persuasion technique to conduct a large-scale, multi-domain analysis of the role of 16 persuasion techniques in disinformation narratives.
It shows how different persuasion techniques are employed disproportionately in different disinformation domains.
We also include a detailed case study on climate change disinformation, highlighting how linguistic, psychological, and cultural factors shape the adaptation of persuasion strategies to fit unique thematic contexts.
- Score: 4.895830603263421
- License:
- Abstract: Disinformation, irrespective of domain or language, aims to deceive or manipulate public opinion, typically through employing advanced persuasion techniques. Qualitative and quantitative research on the weaponisation of persuasion techniques in disinformation has been mostly topic-specific (e.g., COVID-19) with limited cross-domain studies, resulting in a lack of comprehensive understanding of these strategies. This study employs a state-of-the-art persuasion technique classifier to conduct a large-scale, multi-domain analysis of the role of 16 persuasion techniques in disinformation narratives. It shows how different persuasion techniques are employed disproportionately in different disinformation domains. We also include a detailed case study on climate change disinformation, highlighting how linguistic, psychological, and cultural factors shape the adaptation of persuasion strategies to fit unique thematic contexts.
Related papers
- Intervention strategies for misinformation sharing on social media: A bibliometric analysis [1.8020166013859684]
Inaccurate shared information causes confusion, can adversely affect mental health, and can lead to mis-informed decision-making.
This study explores the typology of intervention strategies for addressing misinformation sharing on social media.
It identifies 4 important clusters - cognition-based, automated-based, information-based, and hybrid-based.
arXiv Detail & Related papers (2024-09-26T08:38:15Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.
logical reasoning that can directly support are quite limited in learning, approximation and prediction.
One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Knowledge-enhanced Neural Machine Reasoning: A Review [67.51157900655207]
We introduce a novel taxonomy that categorizes existing knowledge-enhanced methods into two primary categories and four subcategories.
We elucidate the current application domains and provide insight into promising prospects for future research.
arXiv Detail & Related papers (2023-02-04T04:54:30Z) - Using Persuasive Writing Strategies to Explain and Detect Health Misinformation [15.748429583896232]
This research focuses on aiding the automatic identification of misinformation by analyzing the persuasive strategies employed in textual documents.
We introduce a novel annotation scheme encompassing common persuasive writing tactics to achieve our objective.
We provide a dataset on health misinformation, thoroughly annotated by experts utilizing our proposed scheme.
arXiv Detail & Related papers (2022-11-11T03:26:37Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Persuasion Strategies in Advertisements [68.70313043201882]
We introduce an extensive vocabulary of persuasion strategies and build the first ad image corpus annotated with persuasion strategies.
We then formulate the task of persuasion strategy prediction with multi-modal learning.
We conduct a real-world case study on 1600 advertising campaigns of 30 Fortune-500 companies.
arXiv Detail & Related papers (2022-08-20T07:33:13Z) - SciTweets -- A Dataset and Annotation Framework for Detecting Scientific
Online Discourse [2.3371548697609303]
Scientific topics, claims and resources are increasingly debated as part of online discourse.
This has led to both significant societal impact and increased interest in scientific online discourse from various disciplines.
Research across disciplines currently suffers from a lack of robust definitions of the various forms of science-relatedness.
arXiv Detail & Related papers (2022-06-15T08:14:55Z) - E-ffective: A Visual Analytic System for Exploring the Emotion and
Effectiveness of Inspirational Speeches [57.279044079196105]
E-ffective is a visual analytic system allowing speaking experts and novices to analyze both the role of speech factors and their contribution in effective speeches.
Two novel visualizations include E-spiral (that shows the emotional shifts in speeches in a visually compact way) and E-script (that connects speech content with key speech delivery information.
arXiv Detail & Related papers (2021-10-28T06:14:27Z) - Technological Approaches to Detecting Online Disinformation and
Manipulation [0.0]
The move of propaganda and disinformation to the online environment is possible thanks to the fact that within the last decade, digital information channels radically increased in popularity as a news source.
In this chapter, an overview of computer-supported approaches to detecting disinformation and manipulative techniques based on several criteria is presented.
arXiv Detail & Related papers (2021-08-26T09:28:50Z) - Examining the Ordering of Rhetorical Strategies in Persuasive Requests [58.63432866432461]
We use a Variational Autoencoder model to disentangle content and rhetorical strategies in textual requests from a large-scale loan request corpus.
We find that specific (orderings of) strategies interact uniquely with a request's content to impact success rate, and thus the persuasiveness of a request.
arXiv Detail & Related papers (2020-10-09T15:10:44Z) - Vocabulary-based Method for Quantifying Controversy in Social Media [0.0]
We develop a method for controversy detection based primarily on the jargon used by the communities in social media.
Our method dispenses with the use of domain-specific knowledge, is language-agnostic, efficient and easy to apply.
arXiv Detail & Related papers (2020-01-14T17:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.