論文の概要: Delay Embedded Echo-State Network: A Predictor for Partially Observed
Systems
- arxiv url: http://arxiv.org/abs/2211.05992v2
- Date: Wed, 5 Apr 2023 22:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-07 17:43:33.270097
- Title: Delay Embedded Echo-State Network: A Predictor for Partially Observed
Systems
- Title(参考訳): Delay Embedded Echo-State Network: 部分観測システムの予測器
- Authors: Debdipta Goswami
- Abstract要約: エコー状態ネットワーク(ESN)と部分観測状態の時間遅延埋め込みを用いて部分観測の予測器を開発する。
提案手法は,Takenの埋め込み定理と非線形系の強い可観測性によって理論的に正当化される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper considers the problem of data-driven prediction of partially
observed systems using a recurrent neural network. While neural network based
dynamic predictors perform well with full-state training data, prediction with
partial observation during training phase poses a significant challenge. Here a
predictor for partial observations is developed using an echo-state network
(ESN) and time delay embedding of the partially observed state. The proposed
method is theoretically justified with Taken's embedding theorem and strong
observability of a nonlinear system. The efficacy of the proposed method is
demonstrated on three systems: two synthetic datasets from chaotic dynamical
systems and a set of real-time traffic data.
- Abstract(参考訳): 本稿では,リカレントニューラルネットワークを用いた部分観測システムのデータ駆動予測の問題について考察する。
ニューラルネットワークベースの動的予測器はフルステートトレーニングデータでうまく機能するが、トレーニングフェーズにおける部分的観測による予測は大きな課題となる。
ここでは、エコー状態ネットワーク(ESN)と部分観測状態の時間遅延埋め込みを用いて部分観測の予測器を開発する。
提案手法は,Takenの埋め込み定理と非線形系の強い可観測性によって理論的に正当化される。
提案手法の有効性は,カオス力学系からの2つの合成データセットと,リアルタイムトラヒックデータからなる3つのシステムで実証された。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - An LSTM-Based Predictive Monitoring Method for Data with Time-varying
Variability [3.5246670856011035]
本稿では、繰り返し発生するニューラルネットワーク構造がプロセスを監視する能力について考察する。
本研究では,長期短期記憶(LSTM)予測間隔に基づく時間変動データに対する制御チャートを提案する。
提案手法は時系列センサデータにも適用され,本手法が異常検出に有効な手法であることを確認した。
論文 参考訳(メタデータ) (2023-09-05T06:13:09Z) - Variability of echo state network prediction horizon for partially
observed dynamical systems [0.0]
本研究では,部分状態入力と完全状態出力を併用したエコー状態ネットワーク(ESN)フレームワークについて検討する。
ESNは,数回のリャプノフ期までの短期的な予測を行うことができることを示す。
ノイズの多い数値データセットや実験データセットでトレーニングした場合でも,ESNはシステムのダイナミクスを効果的に学習できることを示す。
論文 参考訳(メタデータ) (2023-06-19T09:37:18Z) - Sequential Learning from Noisy Data: Data-Assimilation Meets Echo-State
Network [0.0]
アンサンブルカルマンフィルタを用いた雑音観測を取り入れたエコー状態ネットワーク(ESN)のためのシーケンシャルトレーニングアルゴリズムを開発した。
その結果、カルマン訓練されたエコー状態ネットワーク(KalT-ESN)は、計算コストを抑えながら、最小二乗アルゴリズムで従来の訓練されたESNよりも優れていた。
論文 参考訳(メタデータ) (2023-04-01T02:03:08Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Constrained Block Nonlinear Neural Dynamical Models [1.3163098563588727]
既知の優先度によって調整されたニューラルネットワークモジュールは、非線形ダイナミクスを持つシステムを表現するために効果的に訓練および結合することができる。
提案手法は,入力,状態,出力のダイナミクスを表現するニューラルネットワークブロックで構成され,ネットワーク重みとシステム変数に制約を課す。
3つの非線形システムのシステム識別タスクにおける提案アーキテクチャと学習手法の性能評価を行った。
論文 参考訳(メタデータ) (2021-01-06T04:27:54Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Continuous-time system identification with neural networks: Model
structures and fitting criteria [0.0]
提案するフレームワークは、連続時間状態空間モデルの観点からのシステム動作の表現に基づいている。
アプローチの有効性は3つのケーススタディで実証された。
論文 参考訳(メタデータ) (2020-06-03T12:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。