論文の概要: Re-visiting Reservoir Computing architectures optimized by Evolutionary
Algorithms
- arxiv url: http://arxiv.org/abs/2211.06254v1
- Date: Fri, 11 Nov 2022 14:50:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 15:11:29.040374
- Title: Re-visiting Reservoir Computing architectures optimized by Evolutionary
Algorithms
- Title(参考訳): 進化的アルゴリズムに最適化されたリザーバコンピューティングアーキテクチャの再訪
- Authors: Sebasti\'an Basterrech and Tarun Kumar Sharma
- Abstract要約: 進化的アルゴリズム(EA)はニューラルネットワーク(NN)アーキテクチャの改善に応用されている。
我々は、Reservoir Computing (RC) という、リカレントNNの特定の領域におけるEAの応用に関する体系的な簡単な調査を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For many years, Evolutionary Algorithms (EAs) have been applied to improve
Neural Networks (NNs) architectures. They have been used for solving different
problems, such as training the networks (adjusting the weights), designing
network topology, optimizing global parameters, and selecting features. Here,
we provide a systematic brief survey about applications of the EAs on the
specific domain of the recurrent NNs named Reservoir Computing (RC). At the
beginning of the 2000s, the RC paradigm appeared as a good option for employing
recurrent NNs without dealing with the inconveniences of the training
algorithms. RC models use a nonlinear dynamic system, with fixed recurrent
neural network named the \textit{reservoir}, and learning process is restricted
to adjusting a linear parametric function. %so the performance of learning is
fast and precise. However, an RC model has several hyper-parameters, therefore
EAs are helpful tools to figure out optimal RC architectures. We provide an
overview of the results on the area, discuss novel advances, and we present our
vision regarding the new trends and still open questions.
- Abstract(参考訳): 進化的アルゴリズム(EA)は長年、ニューラルネットワーク(NN)アーキテクチャの改善に用いられてきた。
ネットワークのトレーニング(重みの調整)、ネットワークトポロジの設計、グローバルパラメータの最適化、特徴の選択など、さまざまな問題を解決するために使用されている。
本稿では,Reservoir Computing (RC) という名前のリカレントNNの特定の領域におけるEAの応用について,系統的な簡単な調査を行う。
2000年代初め、RCパラダイムはトレーニングアルゴリズムの不便さに対処することなく、繰り返しNNを採用するための良い選択肢として現れた。
RCモデルは、‘textit{reservoir}’と呼ばれる固定リカレントニューラルネットワークを備えた非線形力学系を使用し、学習過程は線形パラメトリック関数の調整に制限される。
%であり,学習性能は迅速かつ正確である。
しかし、RCモデルは複数のハイパーパラメータを持つため、EAは最適なRCアーキテクチャを見つけるのに役立つ。
本研究は,この領域における成果の概要と,新たな進歩について論じ,新たなトレンドとオープンな疑問に関するビジョンを提示する。
関連論文リスト
- Complexity-Aware Training of Deep Neural Networks for Optimal Structure Discovery [0.0]
本稿では、トレーニング中に、トレーニング済みのネットワークを適用することなく機能するディープニューラルネットワークのユニット/フィルタとレイヤプルーニングを組み合わせた新しいアルゴリズムを提案する。
提案アルゴリズムは,3つのパラメータのみを用いて,層対単位/フィルタプルーニングと計算量対パラメータ複雑性のバランスを保ちながら,学習精度とプルーニングレベルを最適に交換する。
論文 参考訳(メタデータ) (2024-11-14T02:00:22Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - Neuroevolution of Recurrent Architectures on Control Tasks [3.04585143845864]
並列に並列な進化的アルゴリズムを実装し、19のOpenAI Gym状態に基づく強化学習制御タスクで実験を行う。
動的エージェントは, パラメータの桁数を桁違いに減らしながら, 勾配に基づくエージェントの性能に適合するか, 上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-03T16:29:18Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Leveraging power grid topology in machine learning assisted optimal
power flow [0.5076419064097734]
機械学習支援最適電力フロー(OPF)は、非線形および非制約電力フロー問題の計算複雑性を低減することを目的としている。
我々は,機械支援OPFの2つの基本的アプローチに対して,さまざまなFCNN,CNN,GNNモデルの性能を評価する。
相互接続されたユーティリティを持ついくつかの合成格子に対して,特徴変数と対象変数の間の局所性特性は乏しいことを示す。
論文 参考訳(メタデータ) (2021-10-01T10:39:53Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork(CHN)は、ベースモデルを新機能に拡張するためのパラメータを生成する。
予測時、CHNはニューラルネットワークを通る単一のフォワードパスのみを必要とし、大幅なスピードアップをもたらす。
本システムでは,既存のインプテーションやメタラーニングベースラインよりも,新しい特徴のマイズショット学習性能が向上することを示す。
論文 参考訳(メタデータ) (2021-04-12T23:19:49Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。