An Efficient Two-stage Gradient Boosting Framework for Short-term
Traffic State Estimation
- URL: http://arxiv.org/abs/2302.10400v1
- Date: Tue, 21 Feb 2023 02:20:01 GMT
- Title: An Efficient Two-stage Gradient Boosting Framework for Short-term
Traffic State Estimation
- Authors: Yichao Lu
- Abstract summary: The NeurIPS 2022 Traffic4cast challenge provides an excellent testbed for benchmarking short-term traffic state estimation approaches.
We present an efficient two-stage gradient boosting framework for short-term traffic state estimation.
- Score: 4.0248751151060596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time traffic state estimation is essential for intelligent
transportation systems. The NeurIPS 2022 Traffic4cast challenge provides an
excellent testbed for benchmarking short-term traffic state estimation
approaches. This technical report describes our solution to this challenge. In
particular, we present an efficient two-stage gradient boosting framework for
short-term traffic state estimation. The first stage derives the month, day of
the week, and time slot index based on the sparse loop counter data, and the
second stage predicts the future traffic states based on the sparse loop
counter data and the derived month, day of the week, and time slot index.
Experimental results demonstrate that our two-stage gradient boosting framework
achieves strong empirical performance, achieving third place in both the core
and the extended challenges while remaining highly efficient. The source code
for this technical report is available at
\url{https://github.com/YichaoLu/Traffic4cast2022}.
Related papers
- A Slow-Shifting Concerned Machine Learning Method for Short-term Traffic
Flow Forecasting [21.6456624219159]
A crucial challenge in traffic flow forecasting is the slow shifting in temporal peaks between daily and weekly cycles.
We propose a slow shifting concerned machine learning method for traffic flow forecasting, which includes two parts.
Our proposed method outperforms the state-of-art results by 14.55% and 62.56% using the metrics of root mean squared error and mean absolute percentage error, respectively.
arXiv Detail & Related papers (2023-03-31T03:07:53Z) - Similarity-based Feature Extraction for Large-scale Sparse Traffic
Forecasting [4.295541562380963]
The NeurIPS 2022 Traffic4cast challenge is dedicated to predicting the citywide traffic states with publicly available sparse loop count data.
This technical report introduces our second-place winning solution to the extended challenge of ETA prediction.
arXiv Detail & Related papers (2022-11-13T22:19:21Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
We propose a periodic deeptemporal neural network (PSTN) with three modules to improve the forecasting performance of traffic conditions.
First, the historical traffic information is folded and fed into a module consisting of a graph convolutional network and a temporal convolutional network.
arXiv Detail & Related papers (2021-08-05T07:42:43Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
We show that "dataechoed" extensions of common optimization methods exhibit provable improvements over their synchronous counterparts.
Specifically, we show that in convex optimization with minibatches, data echoing affords speedups on the curvature-dominated part of the convergence rate, while maintaining the optimal statistical rate.
arXiv Detail & Related papers (2020-10-26T14:55:31Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
We propose a framework that generates action tube proposals from video streams with a single forward pass in a sparse-to-dense manner.
We evaluate the efficacy of our model on the UCF101-24, JHMDB-21 and UCFSports benchmark datasets.
arXiv Detail & Related papers (2020-08-30T15:38:44Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data.
The proposed methods are verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE.
arXiv Detail & Related papers (2020-06-22T14:26:19Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Nonlinear Traffic Prediction as a Matrix Completion Problem with
Ensemble Learning [1.8352113484137629]
This paper addresses the problem of short-term traffic prediction for signalized traffic operations management.
We focus on predicting sensor states in high-resolution (second-by-second)
Our contributions can be summarized as offering three insights.
arXiv Detail & Related papers (2020-01-08T13:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.