On the characterisation of fragmented Bose-Einstein condensation and its
emergent effective evolution
- URL: http://arxiv.org/abs/2211.07133v1
- Date: Mon, 14 Nov 2022 06:25:19 GMT
- Title: On the characterisation of fragmented Bose-Einstein condensation and its
emergent effective evolution
- Authors: Jinyeop Lee and Alessandro Michelangeli
- Abstract summary: Fragmented Bose-Einstein condensates are large systems of identical bosons displaying macroscopic occupations of one-body states.
Characterising fragmentation solely in terms of reduced density matrices is unsatisfactory and ambiguous.
We provide a quantitative rate of convergence to the leading effective dynamics in the double limit of infinitely many particles and infinite energy gap.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fragmented Bose-Einstein condensates are large systems of identical bosons
displaying \emph{multiple} macroscopic occupations of one-body states, in a
suitable sense. The quest for an effective dynamics of the fragmented
condensate at the leading order in the number of particles, in analogy to the
much more controlled scenario for complete condensation in one single state, is
deceptive both because characterising fragmentation solely in terms of reduced
density matrices is unsatisfactory and ambiguous, and because as soon as the
time evolution starts the rank of the reduced marginals generically passes from
finite to infinite, which is a signature of a transfer of occupations on
infinitely many more one-body states.
In this work we review these difficulties, we refine previous
characterisations of fragmented condensates in terms of marginals, and we
provide a quantitative rate of convergence to the leading effective dynamics in
the double limit of infinitely many particles and infinite energy gap.
Related papers
- Partial confinement in a quantum-link simulator [25.949731736282295]
We show that the spin-1 quantum link model provides an excellent platform for exploring partial confinement.
We conduct a comprehensive investigation of the physics emerging from partial confinement in both the context of equilibrium and non-equilibrium dynamics.
Our work offers a simple and feasible routine for the study of confinement-related physics in the state-of-the-art artificial quantum systems.
arXiv Detail & Related papers (2024-04-28T06:55:08Z) - Strongly subradiant states in planar atomic arrays [39.58317527488534]
We study collective dipolar oscillations in finite planar arrays of quantum emitters in free space.
We show that the external coupling between the collective states associated with the symmetry of the array and with the quasi-flat dispersion of the corresponding infinite lattice plays a crucial role in the boost of their radiative lifetime.
arXiv Detail & Related papers (2023-10-10T17:06:19Z) - Alternating quantum-emitter chains: Exceptional-point phase transition,
edge state, and quantum walks [0.0]
We study the long-range hopping limit of a one-dimensional array of $N$ equal-distanced quantum emitters in free space.
For two species of emitters in an alternating arrangement, the single excitation sector exhibits non-Hermitian spectral singularities known as exceptional points.
We unveil an unconventional phase transition, dubbed exceptional-point phase transition, from the collective to individual spontaneous emission behaviors.
arXiv Detail & Related papers (2023-05-25T13:45:30Z) - Fermionization of a Few-Body Bose System Immersed into a Bose-Einstein
Condensate [0.0]
We study the recently introduced self-pinning transition [Phys. Rev. Lett. 128, 053401 (2022) in a quasi-one-dimensional two-component quantum gas.
As a result of the matter-wave backaction, the fermionization in the limit of infinite intraspecies repulsion occurs via a first-order phase transition to the self-pinned state.
The system also exhibits an additional super state for the immersed component if the interspecies interaction is able to overcome the intraspecies repulsion.
arXiv Detail & Related papers (2023-02-02T08:07:35Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Kinetically constrained freezing transition in a dipole-conserving
system [0.4014524824655105]
We study a lattice gas of particles in one dimension with strictly finite-range interactions.
We find two distinct phases: Near half filling the system thermalizes subdiffusively, with almost all configurations belonging to a single dynamically connected sector.
We study the static and dynamic scaling properties of this weak-to-strong fragmentation phase transition in a kinetically constrained classical Markov circuit model.
arXiv Detail & Related papers (2020-03-31T20:38:13Z) - How creating one additional well can generate Bose-Einstein condensation [0.0]
realization of Bose-Einstein condensation in ultracold trapped gases has led to a revival of interest in that fascinating quantum phenomenon.
We propose a system of strongly interacting bosons which overcomes those obstacles by exhibiting a number of intriguing related features.
arXiv Detail & Related papers (2020-02-23T22:08:01Z) - Non-interacting many-particle quantum transport between finite
reservoirs [5.570257942336495]
We study many-particle quantum transport across a lattice locally connected to two finite, non-stationary (bosonic or fermionic) reservoirs.
We analytically derive the time scale of this equilibration process, and, furthermore, investigate the imprint of many-particle interferences on the transport process.
arXiv Detail & Related papers (2020-02-05T16:02:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.