WSC-Trans: A 3D network model for automatic multi-structural
segmentation of temporal bone CT
- URL: http://arxiv.org/abs/2211.07143v1
- Date: Mon, 14 Nov 2022 06:44:37 GMT
- Title: WSC-Trans: A 3D network model for automatic multi-structural
segmentation of temporal bone CT
- Authors: Xin Hua, Zhijiang Du, Hongjian Yu, Jixin Ma, Fanjun Zheng, Cheng
Zhang, Qiaohui Lu, Hui Zhao
- Abstract summary: We propose a 3D network model for automatic segmentation of multi-structural targets in temporal bone CT.
The algorithm combines CNN and Transformer for feature extraction and takes advantage of spatial attention and channel attention mechanisms to further improve the segmentation effect.
- Score: 5.821303529939008
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cochlear implantation is currently the most effective treatment for patients
with severe deafness, but mastering cochlear implantation is extremely
challenging because the temporal bone has extremely complex and small
three-dimensional anatomical structures, and it is important to avoid damaging
the corresponding structures when performing surgery. The spatial location of
the relevant anatomical tissues within the target area needs to be determined
using CT prior to the procedure. Considering that the target structures are too
small and complex, the time required for manual segmentation is too long, and
it is extremely challenging to segment the temporal bone and its nearby
anatomical structures quickly and accurately. To overcome this difficulty, we
propose a deep learning-based algorithm, a 3D network model for automatic
segmentation of multi-structural targets in temporal bone CT that can
automatically segment the cochlea, facial nerve, auditory tubercle, vestibule
and semicircular canal. The algorithm combines CNN and Transformer for feature
extraction and takes advantage of spatial attention and channel attention
mechanisms to further improve the segmentation effect, the experimental results
comparing with the results of various existing segmentation algorithms show
that the dice similarity scores, Jaccard coefficients of all targets anatomical
structures are significantly higher while HD95 and ASSD scores are lower,
effectively proving that our method outperforms other advanced methods.
Related papers
- Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach [20.416923956241497]
We introduce a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm.
This system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions.
Our model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods.
arXiv Detail & Related papers (2024-11-21T18:21:42Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Multi-target and multi-stage liver lesion segmentation and detection in multi-phase computed tomography scans [12.090385175034305]
Liver lesions vary significantly in their size, shape, texture, and contrast with respect to surrounding tissue.
Current state-of-the-art lesion segmentation networks use the encoder-decoder design paradigm based on the UNet architecture.
Our approach improves relative liver lesion segmentation performance by 1.6% while reducing performance variability across subjects by 8% when compared to the current state-of-the-art models.
arXiv Detail & Related papers (2024-04-17T08:05:04Z) - Region-based U-net for accelerated training and enhanced precision in deep brain segmentation [0.9874634324357792]
This paper presents a deep learning-based segmentation approach for 12 deep-brain structures, utilizing multiple region-based U-Nets.
Our approach achieves remarkable accuracy with an average Dice Similarity Coefficient (DSC) of 0.901 and 95% Hausdorff Distance (HD95) of 1.155 mm.
arXiv Detail & Related papers (2024-03-14T14:04:29Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - CNN-based fully automatic wrist cartilage volume quantification in MR
Image [55.41644538483948]
The U-net convolutional neural network with additional attention layers provides the best wrist cartilage segmentation performance.
The error of cartilage volume measurement should be assessed independently using a non-MRI method.
arXiv Detail & Related papers (2022-06-22T14:19:06Z) - Multi-organ Segmentation Network with Adversarial Performance Validator [10.775440368500416]
This paper introduces an adversarial performance validation network into a 2D-to-3D segmentation framework.
The proposed network converts the 2D-coarse result to 3D high-quality segmentation masks in a coarse-to-fine manner, allowing joint optimization to improve segmentation accuracy.
Experiments on the NIH pancreas segmentation dataset demonstrate the proposed network achieves state-of-the-art accuracy on small organ segmentation and outperforms the previous best.
arXiv Detail & Related papers (2022-04-16T18:00:29Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.