論文の概要: Unsupervised Face Recognition using Unlabeled Synthetic Data
- arxiv url: http://arxiv.org/abs/2211.07371v1
- Date: Mon, 14 Nov 2022 14:05:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 18:42:42.612062
- Title: Unsupervised Face Recognition using Unlabeled Synthetic Data
- Title(参考訳): ラベルなし合成データを用いた教師なし顔認識
- Authors: Fadi Boutros, Marcel Klemt, Meiling Fang, Arjan Kuijper and Naser
Damer
- Abstract要約: ラベルなし合成データ(U SynthFace)に基づく教師なし顔認識モデルを提案する。
提案したU SynthFaceは、同一の合成インスタンスの2つの拡張画像の類似性を最大化することを学ぶ。
ラベルなし合成データを用いた比較的高い認識精度を実現するためのU SynthFaceの有効性を実証する。
- 参考スコア(独自算出の注目度): 16.494722503803196
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Over the past years, the main research innovations in face recognition
focused on training deep neural networks on large-scale identity-labeled
datasets using variations of multi-class classification losses. However, many
of these datasets are retreated by their creators due to increased privacy and
ethical concerns. Very recently, privacy-friendly synthetic data has been
proposed as an alternative to privacy-sensitive authentic data to comply with
privacy regulations and to ensure the continuity of face recognition research.
In this paper, we propose an unsupervised face recognition model based on
unlabeled synthetic data (USynthFace). Our proposed USynthFace learns to
maximize the similarity between two augmented images of the same synthetic
instance. We enable this by a large set of geometric and color transformations
in addition to GAN-based augmentation that contributes to the USynthFace model
training. We also conduct numerous empirical studies on different components of
our USynthFace. With the proposed set of augmentation operations, we proved the
effectiveness of our USynthFace in achieving relatively high recognition
accuracies using unlabeled synthetic data.
- Abstract(参考訳): 過去数年間、顔認識における主要な研究革新は、マルチクラス分類損失のバリエーションを用いて、大規模アイデンティティラベルデータセットでディープニューラルネットワークをトレーニングすることに焦点を当てた。
しかしながら、これらのデータセットの多くは、プライバシーと倫理的懸念の高まりにより、作成者によって取り下げられている。
プライバシーに優しい合成データは、プライバシー規制に準拠し、顔認識研究の継続性を確保するために、プライバシーに敏感な認証データに代わるものとして提案されている。
本稿では,ラベルなし合成データ(USynthFace)に基づく教師なし顔認識モデルを提案する。
提案するusynthfaceは,同一インスタンスの2つの拡張画像間の類似性を最大化する。
私たちはこれを,usynthfaceモデルのトレーニングに寄与するganベースの拡張に加えて,幾何および色変換の大規模なセットによって実現します。
また,USynthFaceのさまざまなコンポーネントについて,多数の実証的研究を行った。
提案する拡張操作により,ラベルなし合成データを用いた比較的高い認識精度を達成するためのusynthfaceの有効性を実証した。
関連論文リスト
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
可逆顔匿名化(Reversible face anonymization)は、顔画像の繊細なアイデンティティ情報を、合成された代替品に置き換えようとしている。
本稿では,Gtextsuperscript2Faceを提案する。
提案手法は,高データの有効性を保ちながら,顔の匿名化と回復において既存の最先端技術よりも優れる。
論文 参考訳(メタデータ) (2024-08-18T12:36:47Z) - Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
本稿では,合成データ時代における第2回顔認識チャレンジの概要について述べる。
FRCSynは、現在の技術的制限に対処するために、顔認識における合成データの使用について調査することを目的としている。
論文 参考訳(メタデータ) (2024-04-16T08:15:10Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
大規模な顔認識データセットは、インターネットをクロールして個人の同意なしに収集し、法的、倫理的、プライバシー上の懸念を提起する。
近年、ウェブクローリングされた顔認識データセットにおける懸念を軽減するために、合成顔認識データセットの生成が提案されている。
本稿では,第18回IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)と共同で開催されているSynthetic Data for Face Recognition (SDFR)コンペティションの概要を紹介する。
SDFRコンペティションは2つのタスクに分けられ、参加者は新しい合成データセットまたは/または既存のデータセットを使用して顔認識システムを訓練することができる。
論文 参考訳(メタデータ) (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
大規模な顔データセットは、主にWebベースのイメージから作成され、明示的なユーザの同意が欠如している。
本稿では,合成顔データを用いて効果的な顔認識モデルの訓練を行う方法について検討する。
論文 参考訳(メタデータ) (2024-04-04T15:45:25Z) - SynthDistill: Face Recognition with Knowledge Distillation from
Synthetic Data [8.026313049094146]
最先端の顔認識ネットワークは計算コストが高く、モバイルアプリケーションでは利用できないことが多い。
本稿では,教師の事前学習した顔認識モデルの知識を合成データを用いて抽出し,軽量な顔認識モデルを訓練するための新しい枠組みを提案する。
我々は、識別ラベルのない合成顔画像を用いて、合成データセットのクラス内変動生成における問題を緩和する。
論文 参考訳(メタデータ) (2023-08-28T19:15:27Z) - Identity-driven Three-Player Generative Adversarial Network for
Synthetic-based Face Recognition [14.73254194339562]
本稿では,識別情報の生成プロセスへの統合を可能にする3プレーヤ生成逆ネットワーク(GAN)フレームワーク,すなわちIDnetを提案する。
我々は,従来の2プレーヤGANと比較して,IDnet合成画像の識別性が高いことを実証的に証明した。
顔認識モデルの訓練におけるIDnetデータの適用性について,広範囲の顔認識ベンチマークを用いて評価を行った。
論文 参考訳(メタデータ) (2023-04-30T00:04:27Z) - Disguise without Disruption: Utility-Preserving Face De-Identification [40.484745636190034]
本研究では,修正データの利用性を確保しつつ,顔画像をシームレスに識別する新しいアルゴリズムであるDisguiseを紹介する。
本手法は, 難読化と非可逆性を最大化するために, 変分機構を用いて生成した合成物を用いて, 描写されたアイデンティティを抽出し置換することを含む。
提案手法を複数のデータセットを用いて広範に評価し,様々な下流タスクにおける従来の手法と比較して,高い非識別率と一貫性を示す。
論文 参考訳(メタデータ) (2023-03-23T13:50:46Z) - SFace: Privacy-friendly and Accurate Face Recognition using Synthetic
Data [9.249824128880707]
本稿では,プライバシフレンドリーな合成顔データセットを用いて顔認識モデルを訓練し,その実現可能性について検討する。
このようなデータを用いて顔認識モデルを訓練する際のプライバシー面に対処するため、合成データセットと生成モデルを訓練するために使用される元の認証データセットとの同一性に関する広範な評価実験を行った。
また,プライバシフレンドリーなデータセットであるSFace上で,3つの異なる学習戦略,多クラス分類,ラベルフリーな知識伝達,多クラス分類と知識伝達の複合学習を用いて,顔認識を訓練することを提案する。
論文 参考訳(メタデータ) (2022-06-21T16:42:04Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
まず,画像生成ネットワークの監視に新たな知覚損失を適用したIACycleGAN(Identity-Aware CycleGAN)モデルを提案する。
眼や鼻などの重要な顔領域の合成により多くの注意を払うことで、フォトエッチング合成におけるサイクガンを改善する。
IACycleGANによる画像の合成を反復的に行う合成モデルと認識モデルとの相互最適化手法を開発した。
論文 参考訳(メタデータ) (2021-03-30T01:30:08Z) - Boosting Unconstrained Face Recognition with Auxiliary Unlabeled Data [59.85605718477639]
本稿では,ラベルのない顔を用いて一般化可能な顔表現を学習する手法を提案する。
制約のないデータセットに対する実験結果から、十分な多様性を持つ少量のラベル付きデータが認識性能を向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2020-03-17T20:58:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。