論文の概要: Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction
- arxiv url: http://arxiv.org/abs/2211.07400v1
- Date: Fri, 11 Nov 2022 01:58:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-15 17:04:24.901582
- Title: Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction
- Title(参考訳): ストック運動予測における多次ダイナミクスと内部ダイナミクスの効率的な統合
- Authors: Thanh Trung Huynh and Minh Hieu Nguyen and Thanh Tam Nguyen and Phi Le
Nguyen and Matthias Weidlich and Quoc Viet Hung Nguyen and Karl Aberer
- Abstract要約: 近年のディープニューラルネットワーク (DNN) 法はハイパーグラフを用いて多次ダイナミクスを捉えるが、畳み込みのフーリエ基底に依存している。
以上の課題を克服するために,ストックムーブメント予測のための枠組みを提案する。
我々の枠組みは、利益と安定性の観点から最先端の手法より優れています。
- 参考スコア(独自算出の注目度): 20.879245331384794
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advances in deep neural network (DNN) architectures have enabled new
prediction techniques for stock market data. Unlike other multivariate
time-series data, stock markets show two unique characteristics: (i)
\emph{multi-order dynamics}, as stock prices are affected by strong
non-pairwise correlations (e.g., within the same industry); and (ii)
\emph{internal dynamics}, as each individual stock shows some particular
behaviour. Recent DNN-based methods capture multi-order dynamics using
hypergraphs, but rely on the Fourier basis in the convolution, which is both
inefficient and ineffective. In addition, they largely ignore internal dynamics
by adopting the same model for each stock, which implies a severe information
loss.
In this paper, we propose a framework for stock movement prediction to
overcome the above issues. Specifically, the framework includes temporal
generative filters that implement a memory-based mechanism onto an LSTM network
in an attempt to learn individual patterns per stock. Moreover, we employ
hypergraph attentions to capture the non-pairwise correlations. Here, using the
wavelet basis instead of the Fourier basis, enables us to simplify the message
passing and focus on the localized convolution. Experiments with US market data
over six years show that our framework outperforms state-of-the-art methods in
terms of profit and stability. Our source code and data are available at
\url{https://github.com/thanhtrunghuynh93/estimate}.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)アーキテクチャの進歩により、株式市場データの新たな予測技術が実現された。
他の多変量時系列データとは異なり、株式市場には2つの特徴がある。
(i)株価は(例えば、同一産業内において)強い非対向的相関によって影響を受けるため、emph{multi-order dynamics} である。
(ii)個々のストックが特定の振る舞いを示すように、emph{internal dynamics}。
近年のDNNベースの手法はハイパーグラフを用いたマルチオーダーダイナミクスを捉えるが、非効率かつ非効率な畳み込みにおけるフーリエ基底に依存している。
さらに、各株に同じモデルを採用することで、内部のダイナミクスをほとんど無視している。
本稿では,上記の課題を克服するための株価変動予測の枠組みを提案する。
具体的には、メモリベースのメカニズムを実装した時間生成フィルタをLSTMネットワークに組み込んで、ストック毎の個々のパターンを学習する。
さらに,非ペアワイズ相関を捉えるためにハイパーグラフアテンションを用いる。
ここで、フーリエ基底の代わりにウェーブレット基底を使用することで、メッセージパッシングを単純化し、局所化された畳み込みにフォーカスすることができる。
米国の6年間の市場データによる実験によると、我々のフレームワークは利益と安定性の点で最先端の手法より優れている。
私たちのソースコードとデータは、 \url{https://github.com/thanhtrunghuynh93/estimate}で利用可能です。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
本稿では,複数株の今後の動きを予測することを目的としたグラフベース表現学習手法を提案する。
当社のアプローチは、7年にわたる3回の試行期間における次のトレーディングデイの株価トレンドを予想する上で、常に最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2024-01-05T17:15:45Z) - DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
本稿では,これらの問題に対処するための知識のない新しいグラフ学習手法を提案する。
まず,信号処理の観点から,エントロピー駆動エッジ生成による動的ストックグラフの自動構築を行う。
最後に, 特徴的階層内特徴を捉えるために, 分離表現学習方式を採用する。
論文 参考訳(メタデータ) (2024-01-03T17:36:27Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
完全2次元畳み込みエンコーダデコーダを用いた長期株価変動傾向の予測手法を提案する。
我々のCNNの階層構造は、長期的・短期的な関係を効果的に捉えることができる。
論文 参考訳(メタデータ) (2023-03-09T01:29:09Z) - Incorporating Interactive Facts for Stock Selection via Neural Recursive
ODEs [30.629948593098273]
ガウス事前を持つ潜在変数モデルであるStockODEを提案する。
我々は、ストックボラティリティの時間的進化を捉えるために、ニューラル再帰正規微分方程式ネットワーク(NRODE)を設計する。
2つの実世界の株式市場データセットで実施された実験は、StockODEがいくつかのベースラインを大きく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-28T06:14:02Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
我々は、ニューラルネットワークを備えたSDEの集合を用いて、ノイズのある時系列の長期的な傾向を予測する。
まず、位相空間再構成法を用いて時系列データの固有次元を抽出する。
次に、$alpha$-stable L'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
論文 参考訳(メタデータ) (2021-11-25T16:49:01Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。