論文の概要: EP-GAT: Energy-based Parallel Graph Attention Neural Network for Stock Trend Classification
- arxiv url: http://arxiv.org/abs/2507.08184v1
- Date: Thu, 10 Jul 2025 21:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.183515
- Title: EP-GAT: Energy-based Parallel Graph Attention Neural Network for Stock Trend Classification
- Title(参考訳): EP-GAT:ストックトレンド分類のためのエネルギーベース並列グラフ注意ニューラルネットワーク
- Authors: Zhuodong Jiang, Pengju Zhang, Peter Martin,
- Abstract要約: 本研究は,複数株の将来の動きを予測する新しいアプローチである,エネルギーベースの並列グラフ注意ニューラルネットワークを提案する。
提案手法を検証するために,実世界の5つのデータセットの実験を行った。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks have shown remarkable performance in forecasting stock movements, which arises from learning complex inter-dependencies between stocks and intra-dynamics of stocks. Existing approaches based on graph neural networks typically rely on static or manually defined factors to model changing inter-dependencies between stocks. Furthermore, these works often struggle to preserve hierarchical features within stocks. To bridge these gaps, this work presents the Energy-based Parallel Graph Attention Neural Network, a novel approach for predicting future movements for multiple stocks. First, it generates a dynamic stock graph with the energy difference between stocks and Boltzmann distribution, capturing evolving inter-dependencies between stocks. Then, a parallel graph attention mechanism is proposed to preserve the hierarchical intra-stock dynamics. Extensive experiments on five real-world datasets are conducted to validate the proposed approach, spanning from the US stock markets (NASDAQ, NYSE, SP) and UK stock markets (FTSE, LSE). The experimental results demonstrate that EP-GAT consistently outperforms competitive five baselines on test periods across various metrics. The ablation studies and hyperparameter sensitivity analysis further validate the effectiveness of each module in the proposed method.
- Abstract(参考訳): グラフニューラルネットワークは、ストック間の複雑な相互依存とストック内力学の学習から生じるストックの動きを予測する際、顕著な性能を示している。
グラフニューラルネットワークに基づく既存のアプローチは、ストック間の依存性の変化をモデル化するために、静的または手動で定義された要素に依存している。
さらに、これらの作品は、しばしば株式内の階層的な特徴を維持するのに苦労する。
これらのギャップを埋めるために、この研究は、複数の株式の将来の動きを予測する新しいアプローチである、エネルギーベースの並列グラフ注意ニューラルネットワークを提案する。
まず、ストックとボルツマン分布のエネルギー差を持つ動的なストックグラフを生成し、ストック間の相互依存性をキャプチャする。
そこで, 並列グラフアテンション機構を提案する。
米国株式市場(NASDAQ,NYSE,SP)と英国株式市場(FTSE,LSE)にまたがる5つの実世界のデータセットに関する大規模な実験を行った。
実験の結果, EP-GATは, 様々な測定値の試験期間において, 競争力の5つの基準線を一貫して上回っていることがわかった。
アブレーション実験とハイパーパラメータ感度解析により,提案手法における各モジュールの有効性がさらに検証された。
関連論文リスト
- Rethinking Link Prediction for Directed Graphs [73.36395969796804]
有向グラフのリンク予測は、様々な現実世界のアプリケーションにとって重要な課題である。
埋め込み手法とグラフニューラルネットワーク(GNN)の最近の進歩は、有望な改善を示している。
本稿では,既存手法の表現性を評価する統一的なフレームワークを提案し,二重埋め込みとデコーダ設計がリンクの有向予測性能に与える影響を強調した。
論文 参考訳(メタデータ) (2025-02-08T23:51:05Z) - MDGNN: Multi-Relational Dynamic Graph Neural Network for Comprehensive
and Dynamic Stock Investment Prediction [22.430266982219496]
マルチリレーショナルな動的グラフニューラルネットワーク(MDGNN)フレームワークを提案する。
提案するMDGNNフレームワークは,SOTA(state-of-the-art-the-art)ストック投資手法と比較して,公開データセットにおける最高のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-01-19T02:51:29Z) - Multi-relational Graph Diffusion Neural Network with Parallel Retention
for Stock Trends Classification [6.383640665055313]
本稿では,複数株の今後の動きを予測することを目的としたグラフベース表現学習手法を提案する。
当社のアプローチは、7年にわたる3回の試行期間における次のトレーディングデイの株価トレンドを予想する上で、常に最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2024-01-05T17:15:45Z) - DGDNN: Decoupled Graph Diffusion Neural Network for Stock Movement
Prediction [8.7861010791349]
本稿では,これらの問題に対処するための知識のない新しいグラフ学習手法を提案する。
まず,信号処理の観点から,エントロピー駆動エッジ生成による動的ストックグラフの自動構築を行う。
最後に, 特徴的階層内特徴を捉えるために, 分離表現学習方式を採用する。
論文 参考訳(メタデータ) (2024-01-03T17:36:27Z) - Out-of-Distribution Generalized Dynamic Graph Neural Network with
Disentangled Intervention and Invariance Promotion [61.751257172868186]
動的グラフニューラルネットワーク(DyGNN)は、グラフと時間力学を利用して強力な予測能力を実証している。
既存のDyGNNは、動的グラフに自然に存在する分散シフトを処理できない。
論文 参考訳(メタデータ) (2023-11-24T02:42:42Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Efficient Integration of Multi-Order Dynamics and Internal Dynamics in
Stock Movement Prediction [20.879245331384794]
近年のディープニューラルネットワーク (DNN) 法はハイパーグラフを用いて多次ダイナミクスを捉えるが、畳み込みのフーリエ基底に依存している。
以上の課題を克服するために,ストックムーブメント予測のための枠組みを提案する。
我々の枠組みは、利益と安定性の観点から最先端の手法より優れています。
論文 参考訳(メタデータ) (2022-11-11T01:58:18Z) - Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend
Prediction [45.74513775015998]
本稿では、エンドツーエンドの株価トレンド予測のための協調的時間関係モデリングフレームワークを提案する。
新しいハイパーグラフトリアテンションネットワーク(HGTAN)が提案され,ハイパーグラフ畳み込みネットワークが拡張された。
このようにして、HGTANは、在庫間の情報伝達におけるノード、ハイパーエッジ、ハイパーグラフの重要性を適応的に決定する。
論文 参考訳(メタデータ) (2021-07-22T02:16:09Z) - Benchmarking Graph Neural Networks on Link Prediction [80.2049358846658]
リンク予測のための異なるデータセット上で,既存のグラフニューラルネットワーク(GNN)モデルをベンチマークする。
実験により,これらのGNNアーキテクチャは,リンク予測タスクの様々なベンチマークでも同様に動作することを示す。
論文 参考訳(メタデータ) (2021-02-24T20:57:16Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
我々は、株式市場の日々の価格を予測するためのグローバルなハイブリッドディープラーニングフレームワークを開発することを提案した。
表現学習によって、私たちはStock2Vecという埋め込みを導きました。
我々のハイブリッドフレームワークは、両方の利点を統合し、いくつかの人気のあるベンチマークモデルよりも、株価予測タスクにおいてより良いパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-09-29T22:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。