論文の概要: Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise
- arxiv url: http://arxiv.org/abs/2111.13164v1
- Date: Thu, 25 Nov 2021 16:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 05:08:43.190243
- Title: Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise
- Title(参考訳): L''evyノイズによる確率微分方程式の組込みによる時系列予測
- Authors: Luxuan Yang, Ting Gao, Yubin Lu, Jinqiao Duan and Tao Liu
- Abstract要約: 我々は、ニューラルネットワークを備えたSDEの集合を用いて、ノイズのある時系列の長期的な傾向を予測する。
まず、位相空間再構成法を用いて時系列データの固有次元を抽出する。
次に、$alpha$-stable L'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
- 参考スコア(独自算出の注目度): 2.3076895420652965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the fast development of modern deep learning techniques, the study of
dynamic systems and neural networks is increasingly benefiting each other in a
lot of different ways. Since uncertainties often arise in real world
observations, SDEs (stochastic differential equations) come to play an
important role. To be more specific, in this paper, we use a collection of SDEs
equipped with neural networks to predict long-term trend of noisy time series
which has big jump properties and high probability distribution shift. Our
contributions are, first, we use the phase space reconstruction method to
extract intrinsic dimension of the time series data so as to determine the
input structure for our forecasting model. Second, we explore SDEs driven by
$\alpha$-stable L\'evy motion to model the time series data and solve the
problem through neural network approximation. Third, we construct the attention
mechanism to achieve multi-time step prediction. Finally, we illustrate our
method by applying it to stock marketing time series prediction and show the
results outperform several baseline deep learning models.
- Abstract(参考訳): 現代のディープラーニング技術の急速な発展により、動的システムとニューラルネットワークの研究は多くの異なる方法で互いに恩恵を受けている。
不確実性は現実世界の観測でしばしば発生するので、sdes(stochastic differential equation)は重要な役割を果たす。
より具体的には、ニューラルネットワークを備えたSDEの集合を用いて、大きなジャンプ特性と高い確率分布シフトを持つノイズのある時系列の長期的傾向を予測する。
まず,位相空間再構成法を用いて時系列データの固有次元を抽出し,予測モデルの入力構造を決定する。
第二に、$\alpha$-stable L\'evyの動作によって駆動されるSDEを探索し、時系列データをモデル化し、ニューラルネットワーク近似を用いて問題を解く。
第3に,マルチタイムステップ予測を実現するための注意機構を構築する。
最後に,本手法を株式マーケティング時系列予測に適用し,いくつかのベースラインディープラーニングモデルに勝る結果を示す。
関連論文リスト
- PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Time Series Forecasting Using Manifold Learning [6.316185724124034]
本研究では,高次元時系列の予測のための多様体学習に基づく3層数値フレームワークを提案する。
最初のステップでは、非線形多様体学習アルゴリズムを用いて、時系列を低次元空間に埋め込む。
2番目のステップでは、埋め込み力学を予測するために、多様体上の低次回帰モデルを構築する。
最後のステップでは、埋め込み時系列を元の高次元空間に戻します。
論文 参考訳(メタデータ) (2021-10-07T17:09:59Z) - Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems [12.319812075685956]
我々は、深部生成モデルと状態空間モデル(SSM)の両方の進歩を組み合わせて、新しいデータ駆動の深部確率的シーケンスモデルを考え出す。
特に、リカレントニューラルネットワーク(RNN)を用いた変動配列モデルを構築するために、一般的なエンコーダデコーダ生成構造に従う。
トレーニングと予測の不整合を緩和するために,次のステップでハイブリッド出力を入力として使用することを提案する。
論文 参考訳(メタデータ) (2021-06-03T23:41:11Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Learning continuous-time PDEs from sparse data with graph neural
networks [10.259254824702555]
本稿では、メッセージパッシンググラフニューラルネットワークにより制御方程式をパラメータ化した動的システムの連続時間差分モデルを提案する。
モデルが非構造化グリッドで機能する能力、任意の時間ステップ、ノイズの多い観測を実演する。
提案手法は,PDEと最先端予測性能の第一次・高次PDEを含む,既知の物理系に対する既存手法と比較する。
論文 参考訳(メタデータ) (2020-06-16T07:15:40Z) - Learning Continuous-Time Dynamics by Stochastic Differential Networks [32.63114111531396]
変動微分ネットワーク(VSDN)という,フレキシブルな連続時間リカレントニューラルネットワークを提案する。
VSDNは神経微分方程式(SDE)による散発時間系列の複雑なダイナミクスを埋め込む
VSDNは最先端の継続的ディープラーニングモデルより優れており、散発時系列の予測やタスクにおいて優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-11T01:40:34Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。