Relativistic single-electron wavepacket in quantum electromagnetic fields: Quantum coherence, correlations, and the Unruh effect
- URL: http://arxiv.org/abs/2401.15404v2
- Date: Sat, 13 Apr 2024 13:50:07 GMT
- Title: Relativistic single-electron wavepacket in quantum electromagnetic fields: Quantum coherence, correlations, and the Unruh effect
- Authors: Shih-Yuin Lin, Bei-Lok Hu,
- Abstract summary: We present a linearized effective theory using a Gaussian wavepacket description of a charged relativistic particle coupled to quantum electromagnetic fields.
We address the issues of decoherence of flying electrons in free space and the impact of Unruh effect on the electrons.
For a single electron accelerated in a uniform electric field, we identify the Unruh effect in the two-point correlators of the deviations from the electron's classical trajectory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional formulation of QED since the 50s works very well for stationary states and for scattering problems, but with newly arisen challenges from the 80s on, where real time evolution of particles in a nonequilibrium setting are required, and quantum features such as coherence, dissipation, correlation and entanglement in a system interacting with its quantum field environment are sought after, new ways to formulate QED suitable for these purposes beckon. In this paper we present a linearized effective theory using a Gaussian wavepacket description of a charged relativistic particle coupled to quantum electromagnetic fields to study the interplay between single electrons and quantum fields in free space, at a scale well below the Schwinger limit. The proper values of the regulators in our effective theory are determined from the data of individual experiments, and will be time-dependent in the laboratory frame if the single electrons are accelerated. Using this new theoretical tool, we address the issues of decoherence of flying electrons in free space and the impact of Unruh effect on the electrons. Our result suggests that vacuum fluctuations may be a major source of blurring the interference pattern in electron microscopes. For a single electron accelerated in a uniform electric field, we identify the Unruh effect in the two-point correlators of the deviations from the electron's classical trajectory. From our calculations we also bring out some subtleties, involving the bosonic versus fermionic spectral functions.
Related papers
- Relativistic Effects on Entangled Single-Electron Traps [0.0]
In the relativistic regime, interactions between charged particles become affected by post-Coulombian corrections.
We look into the behaviour of quantum entanglement present in the static and dynamical regimes.
arXiv Detail & Related papers (2024-06-25T18:00:01Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Coulomb interaction-driven entanglement of electrons on helium [0.0]
We theoretically investigate the generation of emphmotional entanglement between two electrons via their unscreened Coulomb interaction.
We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis.
In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.
arXiv Detail & Related papers (2023-10-07T21:40:20Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Quantum electron transport controlled by cavity vacuum fields [0.0]
We study theoretically how the coupling to cavity vacuum fields affects the electron transport in quantum conductors.
We show how the cavity vacuum fields can lead to both large enhancement or suppression of electron conductance in the ballistic regime.
arXiv Detail & Related papers (2022-06-27T16:27:16Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Light emission is fundamentally tied to the quantum coherence of the
emitting particle [0.0]
We show that even in seemingly classical experimental regimes, light emission is tied to quantum properties of the emitting particles.
By employing quantum electrodynamics, we unveil the role of the particle's coherent momentum uncertainty.
We find instead that the shockwave's duration is fundamentally bound from below by the particle's coherent momentum uncertainty.
arXiv Detail & Related papers (2020-11-01T20:24:00Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum decoherence by Coulomb interaction [58.720142291102135]
We present an experimental study of the Coulomb-induced decoherence of free electrons in a superposition state in a biprism electron interferometer close to a semiconducting and metallic surface.
The results will enable the determination and minimization of specific decoherence channels in the design of novel quantum instruments.
arXiv Detail & Related papers (2020-01-17T04:11:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.