論文の概要: Vision meets algae: A novel way for microalgae recognization and health monitor
- arxiv url: http://arxiv.org/abs/2211.07546v2
- Date: Mon, 26 Aug 2024 09:01:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 01:37:08.523062
- Title: Vision meets algae: A novel way for microalgae recognization and health monitor
- Title(参考訳): Vision meets algae:マイクロ藻の認識と健康モニタリングのための新しい方法
- Authors: Shizheng Zhou, Juntao Jiang, Xiaohan Hong, Yan Hong, Pengcheng Fu,
- Abstract要約: このデータセットは、異なる状態の藻属と同じ属の異なる状態の画像を含む。
このデータセット上で、TOOD、YOLOv5、YOLOv8およびRCNNアルゴリズムの変種をトレーニング、検証、テストしました。
その結果,1段階と2段階の物体検出モデルの両方で平均精度が向上した。
- 参考スコア(独自算出の注目度): 6.731844884087066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Marine microalgae are widespread in the ocean and play a crucial role in the ecosystem. Automatic identification and location of marine microalgae in microscopy images would help establish marine ecological environment monitoring and water quality evaluation system. We proposed a new dataset for the detection of marine microalgae and a range of detection methods, the dataset including images of different genus of algae and the same genus in different states. We set the number of unbalanced classes in the data set and added images of mixed water samples in the test set to simulate the actual situation in the field. Then we trained, validated and tested the, TOOD, YOLOv5, YOLOv8 and variants of RCNN algorithms on this dataset. The results showed both one-stage and two-stage object detection models can achieve high mean average precision, which proves the ability of computer vision in multi-object detection of microalgae, and provides basic data and models for real-time detection of microalgal cells.
- Abstract(参考訳): 海洋性藻類は海洋に広く分布し、生態系において重要な役割を担っている。
顕微鏡画像中の海藻の自動識別と位置は、海洋環境モニタリングと水質評価システムを確立するのに役立つだろう。
本研究では,海藻の検出のための新しいデータセットと,異なる状態の藻類と同一属の画像を含む様々な検出方法を提案する。
我々は,データセット内の不均衡なクラス数を設定し,テストセットに混合水サンプルの画像を加え,フィールドの実際の状況をシミュレートした。
そして、このデータセット上で、TOOD、YOLOv5、YOLOv8、RCNNアルゴリズムの亜種をトレーニング、検証、テストしました。
その結果,1段階と2段階の物体検出モデルの両方で平均精度が向上し,マイクロ藻類のマルチオブジェクト検出におけるコンピュータビジョンの能力が証明され,マイクロ藻類のリアルタイム検出のための基本データとモデルが提供されることがわかった。
関連論文リスト
- Morphological Detection and Classification of Microplastics and Nanoplastics Emerged from Consumer Products by Deep Learning [1.21387493410444]
プラスチック汚染は世界的な問題となり、健康や環境システムに影響を及ぼす。
これらの汚染物質を研究する伝統的な方法は、労働集約的で時間を要する。
本稿では,マイクロ・ナノプラスチックの自動検出と分類を目的とした,新しいオープンソースデータセットであるMiNaとマイクロ・ナノプラスチックについて紹介する。
論文 参考訳(メタデータ) (2024-09-20T17:56:25Z) - The FathomNet2023 Competition Dataset [0.8180522890142969]
海洋科学者は、何十年にもわたって海洋生物を研究するために、視覚データを収集してきた。
これらのデータを自動的に処理するツールもあるが、サンプル集団の極端な変動を処理できるツールは存在しない。
画像やビデオのシーケンスが新しい生物、珍しい動物のコレクションを含むことを認識できるモデルや、そうでなければ海中の視覚データを完全に活用することが重要である。
論文 参考訳(メタデータ) (2023-07-17T18:50:53Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment [101.18253437732933]
海洋環境における微小物体の自動検出と認識の問題を解決するためのYOLOV5機械学習モデルの有効性について検討した。
論文 参考訳(メタデータ) (2022-11-28T10:58:50Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
有害な藻類(HAB)は養殖農場で重大な魚死を引き起こす。
現在、有害藻や他の植物プランクトンを列挙する標準的な方法は、顕微鏡でそれらを手動で観察し数えることである。
合成画像の生成にはGAN(Generative Adversarial Networks)を用いる。
論文 参考訳(メタデータ) (2022-08-03T20:15:55Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - Learning to automate cryo-electron microscopy data collection with
Ptolemy [4.6453787256723365]
低温電子顕微鏡(cryo-EM)は、生体高分子の近原・近原子分解能3次元構造を決定する主要な方法として登場した。
現在,高磁化Cryo-EMマイクログラフの収集には,パラメータの入力と手動チューニングが必要である。
そこで我々は,目的のアルゴリズムを用いて,低・中規模のターゲットを自動生成する最初のパイプラインを開発した。
論文 参考訳(メタデータ) (2021-12-01T22:39:28Z) - Deep neural networks approach to microbial colony detection -- a
comparative analysis [52.77024349608834]
本稿では,AGARデータセットを用いた3つの深層学習手法の性能について検討する。
得られた結果は将来の実験のベンチマークとして機能するかもしれない。
論文 参考訳(メタデータ) (2021-08-23T12:06:00Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。