論文の概要: Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment
- arxiv url: http://arxiv.org/abs/2211.15218v1
- Date: Mon, 28 Nov 2022 10:58:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 14:37:47.659373
- Title: Application of the YOLOv5 Model for the Detection of Microobjects in the
Marine Environment
- Title(参考訳): YOLOv5モデルの海洋環境における微小物体検出への応用
- Authors: Aleksandr N. Grekov (1)(2), Yurii E. Shishkin, Sergei S. Peliushenko,
Aleksandr S. Mavrin, ((1) Institute of Natural and Technical Systems, (2)
Sevastopol State University)
- Abstract要約: 海洋環境における微小物体の自動検出と認識の問題を解決するためのYOLOV5機械学習モデルの有効性について検討した。
- 参考スコア(独自算出の注目度): 101.18253437732933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The efficiency of using the YOLOV5 machine learning model for solving the
problem of automatic de-tection and recognition of micro-objects in the marine
environment is studied. Samples of microplankton and microplastics were
prepared, according to which a database of classified images was collected for
training an image recognition neural network. The results of experiments using
a trained network to find micro-objects in photo and video images in real time
are presented. Experimental studies have shown high efficiency, comparable to
manual recognition, of the proposed model in solving problems of detect-ing
micro-objects in the marine environment.
- Abstract(参考訳): 海洋環境における微小物体の自動検出と認識の問題を解決するためのYOLOV5機械学習モデルの有効性について検討した。
マイクロプランクトンとマイクロプラスチックのサンプルを作成し,画像認識ニューラルネットワークを訓練するために,機密画像のデータベースを収集した。
訓練されたネットワークを用いて、写真やビデオ画像中の微小物体をリアルタイムで見つける実験結果を示す。
実験により, 海洋環境における微小物体の検出問題の解法において, 提案モデルを用いた手動認識に匹敵する高い効率性を示した。
関連論文リスト
- Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology [2.7280901660033643]
本研究は、弱教師付き分類器と自己教師付きマスク付きオートエンコーダ(MAE)のスケーリング特性について検討する。
以上の結果から,ViTをベースとしたMAEは,様々なタスクにおいて弱い教師付き分類器よりも優れており,公的なデータベースから得られた既知の生物学的関係を思い出すと,11.5%の相対的な改善が達成されることがわかった。
我々は、異なる数のチャネルと順序の画像を推論時に入力できる新しいチャネルに依存しないMAEアーキテクチャ(CA-MAE)を開発した。
論文 参考訳(メタデータ) (2024-04-16T02:42:06Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Evaluation of Activated Sludge Settling Characteristics from Microscopy Images with Deep Convolutional Neural Networks and Transfer Learning [7.636901972162706]
本研究では, 活性汚泥沈降特性を評価するために, コンピュータビジョンに基づく革新的な手法を提案する。
深層畳み込みニューラルネットワーク(CNN)モデルの伝達学習の実装により,既存の定量的画像解析技術の限界を克服することを目的とした。
Inception v3, ResNet18, ResNet152, ConvNeXt-nano, ConvNeXt-S などのCNNアーキテクチャを用いて, 汚泥沈降特性の評価を行った。
論文 参考訳(メタデータ) (2024-02-14T18:13:37Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
同様のレベルの遺伝子発現を持つ顕微鏡画像の領域を検出・分類するためのディープラーニングフレームワークを提案する。
分析するデータには教師なし学習モデルが必要です。
論文 参考訳(メタデータ) (2023-04-19T13:45:28Z) - ForamViT-GAN: Exploring New Paradigms in Deep Learning for
Micropaleontological Image Analysis [0.0]
本稿では,階層型視覚変換器とスタイルに基づく生成逆ネットワークアルゴリズムを組み合わせた新しいディープラーニングワークフローを提案する。
本研究では,高信号対雑音比(39.1dB)の高分解能画像とFrechet距離類似度スコア14.88のリアル合成画像を生成することができることを示す。
生成画像と合成画像の両方を精度良く, 異なるフォアミニフェラのセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティクスを初めて行った。
論文 参考訳(メタデータ) (2023-04-09T18:49:38Z) - Vision meets algae: A novel way for microalgae recognization and health monitor [6.731844884087066]
このデータセットは、異なる状態の藻属と同じ属の異なる状態の画像を含む。
このデータセット上で、TOOD、YOLOv5、YOLOv8およびRCNNアルゴリズムの変種をトレーニング、検証、テストしました。
その結果,1段階と2段階の物体検出モデルの両方で平均精度が向上した。
論文 参考訳(メタデータ) (2022-11-14T17:11:15Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Learning to automate cryo-electron microscopy data collection with
Ptolemy [4.6453787256723365]
低温電子顕微鏡(cryo-EM)は、生体高分子の近原・近原子分解能3次元構造を決定する主要な方法として登場した。
現在,高磁化Cryo-EMマイクログラフの収集には,パラメータの入力と手動チューニングが必要である。
そこで我々は,目的のアルゴリズムを用いて,低・中規模のターゲットを自動生成する最初のパイプラインを開発した。
論文 参考訳(メタデータ) (2021-12-01T22:39:28Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。