Exponential Unitary Integrators for Nonseparable Quantum Hamiltonians
- URL: http://arxiv.org/abs/2211.08155v1
- Date: Tue, 15 Nov 2022 14:09:15 GMT
- Title: Exponential Unitary Integrators for Nonseparable Quantum Hamiltonians
- Authors: Maximilian Ciric, Denys I. Bondar and Ole Steuernagel
- Abstract summary: Quantum Hamiltonians containing nonseparable products of non-commuting operators are problematic for numerical studies.
We extend Chin's idea to represent nonseparable terms in terms of separable ones.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Hamiltonians containing nonseparable products of non-commuting
operators, such as $\hat x^m \hat p^n$, are problematic for numerical studies
using split-operator techniques since such products cannot be represented as a
sum of separable terms, such as $T(\hat p) + V(\hat x)$. In the case of
classical physics, Chin [Phys. Rev. E $\bf 80$, 037701 (2009)] developed a
procedure to approximately represent nonseparable terms in terms of separable
ones. We extend Chin's idea to quantum systems. We demonstrate our findings by
numerically evolving the Wigner distribution of a Kerr-type oscillator whose
Hamiltonian contains the nonseparable term $\hat x^2 \hat p^2 + \hat p^2 \hat
x^2$. The general applicability of Chin's approach to any Hamiltonian of
polynomial form is proven.
Related papers
- Generalized quantum Zernike Hamiltonians: Polynomial Higgs-type algebras and algebraic derivation of the spectrum [0.0]
We consider the quantum analog of the generalized Zernike systems given by the Hamiltonian.
This two-dimensional quantum model exhibits higher-order integrals of motion within the enveloping algebra of the Heisenberg algebra.
arXiv Detail & Related papers (2025-02-04T17:06:54Z) - Quantum particle in the wrong box (or: the perils of finite-dimensional approximations) [1.4260624980098286]
We show that the solutions of the Schr"odinger equations generated by truncated Hamiltonians do not converge to the solution of the Schr"odinger equation corresponding to the actual Hamiltonian.
Importantly, numerical simulations will unavoidably reproduce the wrong dynamics in the limit, and yet there is no numerical test that can reveal this failure.
arXiv Detail & Related papers (2024-12-20T13:39:06Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
We study the power of unentangled quantum proofs with non-negative amplitudes, a class which we denote $textQMA+(2)$.
In particular, we design global protocols for small set expansion, unique games, and PCP verification.
We show that QMA(2) is equal to $textQMA+(2)$ provided the gap of the latter is a sufficiently large constant.
arXiv Detail & Related papers (2024-02-29T01:35:46Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Quantum generalized Calogero-Moser systems from free Hamiltonian
reduction [0.0]
The one-dimensional system of particles with a $1/x2$ repulsive potential is known as the Calogero-Moser system.
We present a detailed and rigorous derivation of the generalized quantum Calogero-Moser Hamiltonian.
arXiv Detail & Related papers (2022-11-10T18:34:17Z) - Some Remarks on the Regularized Hamiltonian for Three Bosons with
Contact Interactions [77.34726150561087]
We discuss some properties of a model Hamiltonian for a system of three bosons interacting via zero-range forces in three dimensions.
In particular, starting from a suitable quadratic form $Q$, the self-adjoint and bounded from below Hamiltonian $mathcal H$ can be constructed.
We show that the threshold value $gamma_c$ is optimal, in the sense that the quadratic form $Q$ is unbounded from below if $gammagamma_c$.
arXiv Detail & Related papers (2022-07-01T10:01:14Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Stoquasticity in circuit QED [78.980148137396]
We show that scalable sign-problem free path integral Monte Carlo simulations can typically be performed for such systems.
We corroborate the recent finding that an effective, non-stoquastic qubit Hamiltonian can emerge in a system of capacitively coupled flux qubits.
arXiv Detail & Related papers (2020-11-02T16:41:28Z) - Non-Hermitian N-state degeneracies: unitary realizations via
antisymmetric anharmonicities [0.0]
degeneracy of an $N-$plet of bound states is studied in the framework of quantum theory of closed (i.e., unitary) systems.
For an underlying Hamiltonian $H=H(lambda)$ the degeneracy occurs at a Kato's exceptional point.
arXiv Detail & Related papers (2020-10-28T14:41:52Z) - Heat kernel for the quantum Rabi model II: propagators and spectral
determinants [0.0]
The quantum Rabi model (QRM) is widely recognized as an important model in quantum systems.
We give the explicit formulas for the propagator of the Schr"odinger equation for the Hamiltonian $H_textRabi$ and $H_pm$.
arXiv Detail & Related papers (2020-08-12T14:51:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.