Contrastive learning for regression in multi-site brain age prediction
- URL: http://arxiv.org/abs/2211.08326v2
- Date: Tue, 21 Mar 2023 13:37:04 GMT
- Title: Contrastive learning for regression in multi-site brain age prediction
- Authors: Carlo Alberto Barbano, Benoit Dufumier, Edouard Duchesnay, Marco
Grangetto, Pietro Gori
- Abstract summary: We propose a novel contrastive learning regression loss for robust brain age prediction using MRI scans.
Our method achieves state-of-the-art performance on the OpenBHB challenge, yielding the best generalization capability and robustness to site-related noise.
- Score: 8.985583914175738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building accurate Deep Learning (DL) models for brain age prediction is a
very relevant topic in neuroimaging, as it could help better understand
neurodegenerative disorders and find new biomarkers. To estimate accurate and
generalizable models, large datasets have been collected, which are often
multi-site and multi-scanner. This large heterogeneity negatively affects the
generalization performance of DL models since they are prone to overfit
site-related noise. Recently, contrastive learning approaches have been shown
to be more robust against noise in data or labels. For this reason, we propose
a novel contrastive learning regression loss for robust brain age prediction
using MRI scans. Our method achieves state-of-the-art performance on the
OpenBHB challenge, yielding the best generalization capability and robustness
to site-related noise.
Related papers
- Anatomical Foundation Models for Brain MRIs [6.993491018326816]
AnatCL is an anatomical foundation model for brain MRIs that leverages anatomical information with a weakly contrastive learning approach.
To validate our approach we consider 12 different downstream tasks for diagnosis classification, and prediction of 10 different clinical assessment scores.
arXiv Detail & Related papers (2024-08-07T14:04:50Z) - SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
The gap between brain age and chronological age, referred to as brain PAD (Predicted Age Difference), has been utilized to investigate neurodegenerative conditions.
Brain age can be predicted using MRIs and machine learning techniques.
We introduce Synthetic Brain Age ( SynthBA), a robust deep-learning model designed for predicting brain age.
arXiv Detail & Related papers (2024-06-01T08:58:40Z) - Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer
Learning and Imbalance Handling in Deep Learning Models [0.0]
We present a novel deep learning-based approach, called Transfer Learning-CNN, for brain tumor classification using MRI data.
By leveraging a publicly available Brain MRI dataset, the experiment evaluated various transfer learning models for classifying different tumor types.
The proposed strategy, which combines VGG-16 and CNN, achieved an impressive accuracy rate of 96%, surpassing alternative approaches significantly.
arXiv Detail & Related papers (2023-08-13T17:30:32Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Robust Alzheimer's Progression Modeling using Cross-Domain
Self-Supervised Deep Learning [3.0948853907734044]
We develop a cross-domain self-supervised learning approach for disease prognostic modeling as a regression problem using medical images as input.
We demonstrate that self-supervised pretraining can improve the prediction of Alzheimer's Disease progression from brain MRI.
We also show that pretraining on extended (but not labeled) brain MRI data outperforms pretraining on natural images.
arXiv Detail & Related papers (2022-11-15T23:04:15Z) - A Novel Supervised Contrastive Regression Framework for Prediction of
Neurocognitive Measures Using Multi-Site Harmonized Diffusion MRI
Tractography [13.80649748804573]
Supervised Contrastive Regression (SCR) is a simple yet effective method that allows full supervision for contrastive learning in regression tasks.
SCR performs supervised contrastive representation learning by using the absolute difference between continuous regression labels.
SCR improves the accuracy of neurocognitive score prediction compared to other state-of-the-art methods.
arXiv Detail & Related papers (2022-10-13T23:24:12Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.