論文の概要: Decentralized Federated Learning: Fundamentals, State of the Art,
Frameworks, Trends, and Challenges
- arxiv url: http://arxiv.org/abs/2211.08413v3
- Date: Tue, 11 Jul 2023 16:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-12 19:20:06.915608
- Title: Decentralized Federated Learning: Fundamentals, State of the Art,
Frameworks, Trends, and Challenges
- Title(参考訳): 分散連合学習 : 基礎, 現状, フレームワーク, トレンド, 課題
- Authors: Enrique Tom\'as Mart\'inez Beltr\'an, Mario Quiles P\'erez, Pedro
Miguel S\'anchez S\'anchez, Sergio L\'opez Bernal, G\'er\^ome Bovet, Manuel
Gil P\'erez, Gregorio Mart\'inez P\'erez, Alberto Huertas Celdr\'an
- Abstract要約: フェデレートラーニング(Federated Learning, CFL)は、その誕生以来、中央組織がグローバルモデルを作成する文学において最も一般的なアプローチである。
分散フェデレートラーニング(DFL)は、分散モデルアグリゲーションを促進することでこれらの問題に対処する。
本稿では,DFLの主な基礎を,フェデレーションアーキテクチャ,トポロジ,通信機構,セキュリティアプローチ,キーパフォーマンス指標の観点から同定し,解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In the last decade, Federated Learning (FL) has gained relevance in training
collaborative models without sharing sensitive data. Since its birth,
Centralized FL (CFL) has been the most common approach in the literature, where
a central entity creates a global model. However, a centralized approach leads
to increased latency due to bottlenecks, heightened vulnerability to system
failures, and trustworthiness concerns affecting the entity responsible for the
global model creation. Decentralized Federated Learning (DFL) emerged to
address these concerns by promoting decentralized model aggregation and
minimizing reliance on centralized architectures. However, despite the work
done in DFL, the literature has not (i) studied the main aspects
differentiating DFL and CFL; (ii) analyzed DFL frameworks to create and
evaluate new solutions; and (iii) reviewed application scenarios using DFL.
Thus, this article identifies and analyzes the main fundamentals of DFL in
terms of federation architectures, topologies, communication mechanisms,
security approaches, and key performance indicators. Additionally, the paper at
hand explores existing mechanisms to optimize critical DFL fundamentals. Then,
the most relevant features of the current DFL frameworks are reviewed and
compared. After that, it analyzes the most used DFL application scenarios,
identifying solutions based on the fundamentals and frameworks previously
defined. Finally, the evolution of existing DFL solutions is studied to provide
a list of trends, lessons learned, and open challenges.
- Abstract(参考訳): 過去10年間で、フェデレートラーニング(FL)は、機密データを共有せずにコラボレーティブモデルのトレーニングに関連がある。
中央集権FL(CFL)は、その誕生以来、中央の実体が大域的なモデルを作成する文学において最も一般的なアプローチである。
しかしながら、集中的なアプローチはボトルネックによるレイテンシの増加、システムの障害に対する脆弱性の増大、グローバルモデル作成に責任を持つエンティティに対する信頼性の懸念などにつながります。
DFL(Decentralized Federated Learning)は、分散モデルの集約を促進し、集中型アーキテクチャへの依存を最小限にすることで、これらの問題に対処するために登場した。
しかし、DFLでの作業にもかかわらず、文献は残っていない。
(i)DFLとCFLを区別する主な側面の研究。
(二)新しいソリューションを作成し評価するためのDFLフレームワークの分析、及び
3)DFLを用いたアプリケーションシナリオのレビュー。
本稿では,フェデレーションアーキテクチャ,トポロジ,通信機構,セキュリティアプローチ,主要なパフォーマンス指標といった観点から,dflの主な基礎を特定し,分析する。
さらに、論文は重要なdflの基本を最適化するための既存のメカニズムを探求している。
次に、現在のdflフレームワークの最も関連するフィーチャをレビューして比較する。
その後、最もよく使われるDFLアプリケーションシナリオを分析し、以前定義された基本とフレームワークに基づいたソリューションを特定します。
最後に、既存のDFLソリューションの進化について研究し、トレンド、学んだ教訓、オープンな課題のリストを提供する。
関連論文リスト
- Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated Learning(FL)は、データプライバシを保持しながら協調的なモデルトレーニングを可能にする分散機械学習パラダイムである。
本稿では,統合学習のためのフレームワークおよびベンチマークスイートであるAPPFLの開発における最近の進歩について述べる。
本稿では, 通信効率, プライバシー保護, 計算性能, 資源利用など, FLの様々な側面を評価する広範な実験を通じて, APPFLの能力を実証する。
論文 参考訳(メタデータ) (2024-09-17T22:20:26Z) - Towards Understanding Generalization and Stability Gaps between Centralized and Decentralized Federated Learning [57.35402286842029]
集中学習は常に分散学習(DFL)よりも一般化されていることを示す。
また、FLにおけるいくつかの一般的な設定について実験を行い、我々の理論解析が実験的な現象と一致し、いくつかの一般的なシナリオおよび実践シナリオにおいて文脈的に有効であることを示す。
論文 参考訳(メタデータ) (2023-10-05T11:09:42Z) - Heterogeneous Federated Learning: State-of-the-art and Research
Challenges [117.77132819796105]
不均一フェデレートラーニング(HFL)はより困難であり、それに対応するソリューションは多様で複雑である。
HFLの新たな進歩を概説し,既存のHFL手法の新たな分類法を提案する。
HFLにおけるいくつかの重要かつ将来的な研究方向性について論じる。
論文 参考訳(メタデータ) (2023-07-20T06:32:14Z) - Decentralized Federated Learning: A Survey and Perspective [45.81975053649379]
分散FL(DFL)は、中央サーバーを必要としない分散ネットワークアーキテクチャである。
DFLはクライアント間の直接通信を可能にし、通信リソースの大幅な節約をもたらす。
論文 参考訳(メタデータ) (2023-06-02T15:12:58Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
フェデレートラーニング(FL)は、分散インフラストラクチャ、コミュニケーション、コンピューティング、学習をプライバシ保護の方法で統合する際の利点を示している。
既存のFL手法のロバスト性と能力は、制限された動的データと条件によって挑戦される。
BFLはこれらの問題に対処するための有望なアプローチとして登場した。
論文 参考訳(メタデータ) (2023-04-26T03:41:17Z) - Vertical Federated Learning: A Structured Literature Review [0.0]
フェデレートラーニング(FL)は、データプライバシのメリットを付加した、有望な分散ラーニングパラダイムとして登場した。
本稿では,VFLにおける最先端のアプローチを論じる構造化文献レビューを行う。
論文 参考訳(メタデータ) (2022-12-01T16:16:41Z) - Vertical Federated Learning: Challenges, Methodologies and Experiments [34.4865409422585]
垂直学習(VFL)は、異なるクライアントからサブモデルを受け入れることで、ハイパーMLモデルを構築することができる。
本稿では,VFLにおける課題を効果的に解決し,実生活データセット上で実験を行う。
論文 参考訳(メタデータ) (2022-02-09T06:56:41Z) - SSFL: Tackling Label Deficiency in Federated Learning via Personalized
Self-Supervision [34.38856587032084]
Federated Learning(FL)は、MLトレーニングエコシステムを、クラウド上の集中的な設定から、エッジデバイス上での分散トレーニングへと変えようとしている。
本稿では,自己教師型・パーソナライズド・フェデレーション・ラーニング・フレームワークである,自己教師型フェデレーション・ラーニング(SSFL)を提案する。
FLにおける教師なし学習と教師なし学習との評価精度の差は小さく,合理的であることを示す。
論文 参考訳(メタデータ) (2021-10-06T02:58:45Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。