Resource Allocation of Federated Learning for the Metaverse with Mobile
Augmented Reality
- URL: http://arxiv.org/abs/2211.08705v3
- Date: Thu, 7 Dec 2023 09:22:03 GMT
- Title: Resource Allocation of Federated Learning for the Metaverse with Mobile
Augmented Reality
- Authors: Xinyu Zhou, Chang Liu, Jun Zhao
- Abstract summary: Metaverse applications via mobile augmented reality (MAR) require rapid and accurate object detection to mix digital data with the real world.
Federated learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics.
We formulate an optimization problem to minimize a weighted combination of total energy consumption, completion time and model accuracy.
- Score: 13.954907748381743
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Metaverse has received much attention recently. Metaverse applications
via mobile augmented reality (MAR) require rapid and accurate object detection
to mix digital data with the real world. Federated learning (FL) is an
intriguing distributed machine learning approach due to its privacy-preserving
characteristics. Due to privacy concerns and the limited computation resources
on mobile devices, we incorporate FL into MAR systems of the Metaverse to train
a model cooperatively. Besides, to balance the trade-off between energy,
execution latency and model accuracy, thereby accommodating different demands
and application scenarios, we formulate an optimization problem to minimize a
weighted combination of total energy consumption, completion time and model
accuracy. Through decomposing the non-convex optimization problem into two
subproblems, we devise a resource allocation algorithm to determine the
bandwidth allocation, transmission power, CPU frequency and video frame
resolution for each participating device. We further present the convergence
analysis and computational complexity of the proposed algorithm. Numerical
results show that our proposed algorithm has better performance (in terms of
energy consumption, completion time and model accuracy) under different weight
parameters compared to existing benchmarks.
Related papers
- Resource Management for Low-latency Cooperative Fine-tuning of Foundation Models at the Network Edge [35.40849522296486]
Large-scale foundation models (FoMos) can perform human-like intelligence.
FoMos need to be adapted to specialized downstream tasks through fine-tuning techniques.
We advocate multi-device cooperation within the device-edge cooperative fine-tuning paradigm.
arXiv Detail & Related papers (2024-07-13T12:47:14Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Joint Optimization of Energy Consumption and Completion Time in
Federated Learning [16.127019859725785]
Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics.
We formulate an algorithm to balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios.
arXiv Detail & Related papers (2022-09-29T16:05:28Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - Resource-Efficient and Delay-Aware Federated Learning Design under Edge
Heterogeneity [10.702853653891902]
Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices.
In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL.
Our proposed StoFedDelAv incorporates a localglobal model combiner into the FL computation step.
arXiv Detail & Related papers (2021-12-27T22:30:15Z) - Feeling of Presence Maximization: mmWave-Enabled Virtual Reality Meets
Deep Reinforcement Learning [76.46530937296066]
This paper investigates the problem of providing ultra-reliable and energy-efficient virtual reality (VR) experiences for wireless mobile users.
To ensure reliable ultra-high-definition (UHD) video frame delivery to mobile users, a coordinated multipoint (CoMP) transmission technique and millimeter wave (mmWave) communications are exploited.
arXiv Detail & Related papers (2021-06-03T08:35:10Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Federated Learning via Intelligent Reflecting Surface [30.935389187215474]
Over-the-air computation algorithm (AirComp) based learning (FL) is capable of achieving fast model aggregation by exploiting the waveform superposition property of multiple access channels.
In this paper, we propose a two-step optimization framework to achieve fast yet reliable model aggregation for AirComp-based FL.
Simulation results will demonstrate that our proposed framework and the deployment of an IRS can achieve a lower training loss and higher FL prediction accuracy than the baseline algorithms.
arXiv Detail & Related papers (2020-11-10T11:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.