論文の概要: Distributed Node Covering Optimization for Large Scale Networks and Its
Application on Social Advertising
- arxiv url: http://arxiv.org/abs/2211.08738v1
- Date: Wed, 16 Nov 2022 07:57:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 15:14:56.611839
- Title: Distributed Node Covering Optimization for Large Scale Networks and Its
Application on Social Advertising
- Title(参考訳): 大規模ネットワークにおける分散ノード被覆最適化とソーシャル広告への応用
- Authors: Qiang Liu
- Abstract要約: 本稿では,実シナリオの規模でノード被覆問題を解くための分散計算手法を提案する。
オンラインモバイルゲームにおけるユーザをリコールするソーシャル広告に本手法を適用した。
- 参考スコア(独自算出の注目度): 8.19277339277905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combinatorial optimizations are usually complex and inefficient, which limits
their applications in large-scale networks with billions of links. We introduce
a distributed computational method for solving a node-covering problem at the
scale of factual scenarios. We first construct a genetic algorithm and then
design a two-step strategy to initialize the candidate solutions. All the
computational operations are designed and developed in a distributed form on
\textit{Apache Spark} enabling fast calculation for practical graphs. We apply
our method to social advertising of recalling back churn users in online mobile
games, which was previously only treated as a traditional item recommending or
ranking problem.
- Abstract(参考訳): 組合せ最適化は通常複雑で非効率であり、数十億のリンクを持つ大規模ネットワークのアプリケーションを制限する。
本稿では,実シナリオの規模でノード被覆問題を解決する分散計算手法を提案する。
まず、遺伝的アルゴリズムを構築し、次に候補解を初期化する2段階の戦略を設計する。
すべての計算処理は、実用的なグラフの高速計算を可能にする \textit{apache spark} 上の分散形式で設計され、開発されている。
本手法は,従来の推薦・ランキング問題としてのみ扱われていたオンラインモバイルゲームにおいて,ユーザをリコールするソーシャル広告に適用する。
関連論文リスト
- COMBHelper: A Neural Approach to Reduce Search Space for Graph
Combinatorial Problems [19.442683583536137]
COMBHelperは、ソリューションセットの有望なノードを特定するために、グラフニューラルネットワーク(GNN)を使用している。
また、知識蒸留(KD)モジュールと問題固有のブースティングモジュールを使用して、さらなる効率性と有効性をもたらす。
実験の結果,COMBHelperを用いた従来のCOアルゴリズムは,従来のバージョンに比べて少なくとも2倍高速であることがわかった。
論文 参考訳(メタデータ) (2023-12-14T16:17:20Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Runtime Analysis of Competitive co-Evolutionary Algorithms for Maximin Optimisation of a Bilinear Function [1.3053649021965603]
共進化的アルゴリズムには、ハードウェア設計、ボードゲーム戦略の進化、ソフトウェアバグのパッチなど、幅広い応用がある。
共進化的アルゴリズムが解を効率的にかつ確実に見つけることを予測できる理論を開発することは、オープンな挑戦である。
本稿では,人口ベース競争共進化型アルゴリズムのランタイム解析開発における第一歩について述べる。
論文 参考訳(メタデータ) (2022-06-30T12:35:36Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Parallel Scheduling Self-attention Mechanism: Generalization and
Optimization [0.76146285961466]
本稿では,SAT(Satisfiability check)ソルバによって解決された小インスタンスの最適スケジューリングから導いた一般スケジューリングアルゴリズムを提案する。
余剰計算をスキップする際のさらなる最適化戦略も推進され、元の計算の約25%と50%の削減が達成される。
提案アルゴリズムは、入力ベクトルの数がアーキテクチャで利用可能な演算ユニットの数に割り切れる限り、問題のサイズにかかわらず適用可能である。
論文 参考訳(メタデータ) (2020-12-02T12:04:16Z) - The Best of Many Worlds: Dual Mirror Descent for Online Allocation
Problems [7.433931244705934]
本稿では,意思決定者に対して未知の入力モデルを用いて,各要求に対する報酬とリソース消費を生成するデータ駆動型設定について考察する。
様々な入力モデルにおいて,どの入力に直面するかを知ることなく,優れた性能が得られるアルゴリズムの一般クラスを設計する。
我々のアルゴリズムはラグランジアン双対空間で動作し、オンラインミラー降下を用いて更新される各リソースに対して双対乗算器を保持する。
論文 参考訳(メタデータ) (2020-11-18T18:39:17Z) - MineReduce: an approach based on data mining for problem size reduction [58.720142291102135]
本稿では,マイニングパターンを用いて問題サイズの削減を行うMineReduceという手法を提案する。
異種車両ルーティング問題に対するMineReduceの適用について述べる。
論文 参考訳(メタデータ) (2020-05-15T08:49:50Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
我々はヘッセン語の形成が計算的に困難であり、通信がボトルネックとなる分散最適化問題を考察する。
我々は、ヘッセンのサンプリングとスケッチを用いたランダム化二階最適化のための非バイアスパラメータ平均化手法を開発した。
また、不均一なコンピューティングシステムのための非バイアス分散最適化フレームワークを導入するために、二階平均化手法のフレームワークを拡張した。
論文 参考訳(メタデータ) (2020-02-16T09:01:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。