Adapting to noise distribution shifts in flow-based gravitational-wave
inference
- URL: http://arxiv.org/abs/2211.08801v1
- Date: Wed, 16 Nov 2022 09:56:23 GMT
- Title: Adapting to noise distribution shifts in flow-based gravitational-wave
inference
- Authors: Jonas Wildberger, Maximilian Dax, Stephen R. Green, Jonathan Gair,
Michael P\"urrer, Jakob H. Macke, Alessandra Buonanno, Bernhard Sch\"olkopf
- Abstract summary: We show how to produce amortized inference by producing a conditional flow of data.
We expect this approach to be a key component to enable the use of deep learning techniques for low-latency analyses of gravitational waves.
- Score: 59.040209568168436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning techniques for gravitational-wave parameter estimation have
emerged as a fast alternative to standard samplers $\unicode{x2013}$ producing
results of comparable accuracy. These approaches (e.g., DINGO) enable amortized
inference by training a normalizing flow to represent the Bayesian posterior
conditional on observed data. By conditioning also on the noise power spectral
density (PSD) they can even account for changing detector characteristics.
However, training such networks requires knowing in advance the distribution of
PSDs expected to be observed, and therefore can only take place once all data
to be analyzed have been gathered. Here, we develop a probabilistic model to
forecast future PSDs, greatly increasing the temporal scope of DINGO networks.
Using PSDs from the second LIGO-Virgo observing run (O2) $\unicode{x2013}$ plus
just a single PSD from the beginning of the third (O3) $\unicode{x2013}$ we
show that we can train a DINGO network to perform accurate inference throughout
O3 (on 37 real events). We therefore expect this approach to be a key component
to enable the use of deep learning techniques for low-latency analyses of
gravitational waves.
Related papers
- Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
Deep neural networks offer an alternative paradigm for modeling weather conditions.
MetNet-3 learns from both dense and sparse data sensors and makes predictions up to 24 hours ahead for precipitation, wind, temperature and dew point.
MetNet-3 has a high temporal and spatial resolution, respectively, up to 2 minutes and 1 km as well as a low operational latency.
arXiv Detail & Related papers (2023-06-06T07:07:54Z) - DDP: Diffusion Model for Dense Visual Prediction [71.55770562024782]
We propose a simple, efficient, yet powerful framework for dense visual predictions based on the conditional diffusion pipeline.
The method, called DDP, efficiently extends the denoising diffusion process into the modern perception pipeline.
DDP shows attractive properties such as dynamic inference and uncertainty awareness, in contrast to previous single-step discriminative methods.
arXiv Detail & Related papers (2023-03-30T17:26:50Z) - Deep Graph Stream SVDD: Anomaly Detection in Cyber-Physical Systems [17.373668215331737]
We propose a new approach called deep graph vector data description (SVDD) for anomaly detection.
We first use a transformer to preserve both short and long temporal patterns monitoring data in temporal embeddings.
We cluster these embeddings according to sensor type and utilize them to estimate the change in connectivity between various sensors to construct a new weighted graph.
arXiv Detail & Related papers (2023-02-24T22:14:39Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z) - Monocular Depth Estimation Primed by Salient Point Detection and
Normalized Hessian Loss [43.950140695759764]
We propose an accurate and lightweight framework for monocular depth estimation based on a self-attention mechanism stemming from salient point detection.
We introduce a normalized Hessian loss term invariant to scaling and shear along the depth direction, which is shown to substantially improve the accuracy.
The proposed method achieves state-of-the-art results on NYU-Depth-v2 and KITTI while using 3.1-38.4 times smaller model in terms of the number of parameters than baseline approaches.
arXiv Detail & Related papers (2021-08-25T07:51:09Z) - Real-time gravitational-wave science with neural posterior estimation [64.67121167063696]
We demonstrate unprecedented accuracy for rapid gravitational-wave parameter estimation with deep learning.
We analyze eight gravitational-wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog.
We find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to a minute per event.
arXiv Detail & Related papers (2021-06-23T18:00:05Z) - Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets [0.0]
Deep operator networks (DeepONets) are receiving increased attention thanks to their demonstrated capability to approximate nonlinear operators between infinite-dimensional Banach spaces.
We propose a novel model class coined as physics-informed DeepONets, which introduces an effective regularization mechanism for biasing the outputs of DeepOnet models towards ensuring physical consistency.
We demonstrate that this simple, yet remarkably effective extension can not only yield a significant improvement in the predictive accuracy of DeepOnets, but also greatly reduce the need for large training data-sets.
arXiv Detail & Related papers (2021-03-19T18:15:42Z) - Complete parameter inference for GW150914 using deep learning [0.0]
LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years.
As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis.
We apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves.
arXiv Detail & Related papers (2020-08-07T18:00:02Z) - Inverting the Pose Forecasting Pipeline with SPF2: Sequential Pointcloud
Forecasting for Sequential Pose Forecasting [106.3504366501894]
Self-driving vehicles and robotic manipulation systems often forecast future object poses by first detecting and tracking objects.
This detect-then-forecast pipeline is expensive to scale, as pose forecasting algorithms typically require labeled sequences of object poses.
We propose to first forecast 3D sensor data and then detect/track objects on the predicted point cloud sequences to obtain future poses.
This makes it less expensive to scale pose forecasting, as the sensor data forecasting task requires no labels.
arXiv Detail & Related papers (2020-03-18T17:54:28Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.