論文の概要: Analysis and Detectability of Offline Data Poisoning Attacks on Linear
Systems
- arxiv url: http://arxiv.org/abs/2211.08804v1
- Date: Wed, 16 Nov 2022 10:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-17 17:00:10.737757
- Title: Analysis and Detectability of Offline Data Poisoning Attacks on Linear
Systems
- Title(参考訳): リニアシステムにおけるオフラインデータポジショニング攻撃の解析と検出可能性
- Authors: Alessio Russo, Alexandre Proutiere
- Abstract要約: データ中毒攻撃がデータ駆動制御方法に与える影響について検討する。
古典的検出テストから逃れることのできるステルスデータ中毒攻撃を提案する。
- 参考スコア(独自算出の注目度): 77.60508571062958
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A recent body of literature has investigated the effect of data poisoning
attacks on data-driven control methods. Data poisoning attacks are well-known
to the Machine Learning community, which, however, make use of assumptions,
such as cross-sample independence, that in general do not hold for dynamical
systems. As a consequence, attacks, and detection methods, operate differently
from the i.i.d. setting studied in classical supervised problems. In
particular, data poisoning attacks against data-driven control methods can be
fundamentally seen as changing the behavior of the dynamical system described
by the data. In this work, we study this phenomenon through the lens of
statistical testing, and verify the detectability of different attacks for a
linear dynamical system. On the basis of the arguments hereby presented, we
propose a stealthy data poisoning attack that can escape classical detection
tests, and conclude by showing the efficiency of the proposed attack.
- Abstract(参考訳): 最近の文献では、データ駆動制御法に対するデータ中毒攻撃の効果が研究されている。
データ中毒攻撃は機械学習コミュニティでよく知られており、クロスサンプル独立のような仮定を利用しており、一般的には動的システムには当てはまらない。
その結果、攻撃や検出手法は、古典的教師付き問題で研究されているi.i.d.設定とは異なる動作をする。
特に、データ駆動制御メソッドに対するデータ中毒攻撃は、データによって記述された動的システムの振る舞いを変えるものとして、基本的に見ることができる。
本研究では,この現象を統計的テストのレンズを通して研究し,線形力学系に対する異なる攻撃の検出可能性を検証する。
そこで本研究では,古典的検出試験から逃れることのできるステルスデータ中毒攻撃を提案し,提案攻撃の有効性を示す。
関連論文リスト
- On the Adversarial Risk of Test Time Adaptation: An Investigation into Realistic Test-Time Data Poisoning [49.17494657762375]
テスト時間適応(TTA)は、テストデータを使用して推論段階でモデルの重みを更新し、一般化を強化する。
既存の研究では、TTAが逆方向検体で更新されると、良性検体の性能が低下することが示されている。
そこで本研究では, 良性試料にアクセスすることなく, 有毒試料を効果的かつ現実的に生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-07T01:29:19Z) - Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Poison is Not Traceless: Fully-Agnostic Detection of Poisoning Attacks [4.064462548421468]
本稿では,潜在的に有毒なデータセットの分析にのみ依存する攻撃を検知する新しいフレームワークであるDIVAを提案する。
評価のために,本稿ではラベルフリップ攻撃に対するDIVAを検証した。
論文 参考訳(メタデータ) (2023-10-24T22:27:44Z) - What Distributions are Robust to Indiscriminate Poisoning Attacks for
Linear Learners? [15.848311379119295]
本研究では, 学習者に対する無差別な毒殺について検討し, 学習者に対して, 学習データにいくつかの工芸品を注入し, 誘導モデルに高い試験誤差を生じさせるよう強制することを目的とした。
そこで本研究では, 線形学習者に対して, 線形学習者に対する有害な攻撃を非差別化するために, データセットが本質的に堅牢であるかどうかを考察した。
論文 参考訳(メタデータ) (2023-07-03T14:54:13Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning
Attacks [31.339252233416477]
対象パラメータに対するデータ中毒攻撃の本質的な限界を探索するための技術ツールとして,モデル中毒の到達可能性の概念を紹介した。
我々は、一般的なMLモデルの中で驚くべき位相遷移現象を確立し、定量化するために、容易に計算可能なしきい値を得る。
我々の研究は, 有毒比がもたらす重要な役割を強調し, データ中毒における既存の経験的結果, 攻撃, 緩和戦略に関する新たな知見を隠蔽する。
論文 参考訳(メタデータ) (2023-03-07T01:55:26Z) - Temporal Robustness against Data Poisoning [69.01705108817785]
データ中毒は、悪意のあるトレーニングデータを通じて、敵対者が機械学習アルゴリズムの振る舞いを操作する場合を考慮している。
本研究では,攻撃開始時間と攻撃持続時間を測定する2つの新しい指標である耳線と持続時間を用いたデータ中毒の時間的脅威モデルを提案する。
論文 参考訳(メタデータ) (2023-02-07T18:59:19Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Data Poisoning Attacks on Regression Learning and Corresponding Defenses [0.0]
逆データ中毒は機械学習に対する効果的な攻撃であり、トレーニングデータセットに有毒データを導入することでモデルの完全性を脅かす。
データ中毒攻撃が生産システムに脅威を与え、新たなブラックボックス攻撃をもたらす現実的なシナリオを提示する。
その結果, 残留剤の平均二乗誤差(MSE)は, わずか2%の毒素を挿入することにより150パーセントに増加することがわかった。
論文 参考訳(メタデータ) (2020-09-15T12:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。