論文の概要: CASPR: Customer Activity Sequence-based Prediction and Representation
- arxiv url: http://arxiv.org/abs/2211.09174v1
- Date: Wed, 16 Nov 2022 19:46:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 15:25:20.854966
- Title: CASPR: Customer Activity Sequence-based Prediction and Representation
- Title(参考訳): CASPR: 顧客活動シーケンスに基づく予測と表現
- Authors: Pin-Jung Chen, Sahil Bhatnagar, Damian Konrad Kowalczyk, Mayank
Shrivastava
- Abstract要約: 本稿では、顧客の取引を、顧客とビジネスの関係の一般的な表現にエンコードする新しいアプローチを提案する。
次に、様々なアプリケーションにまたがる複数のモデルをトレーニングする機能として、これらの埋め込みを評価します。
我々の大規模な実験は、小規模および大規模エンタープライズアプリケーションの両方にCASPRを検証します。
- 参考スコア(独自算出の注目度): 2.0668471963669606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tasks critical to enterprise profitability, such as customer churn
prediction, fraudulent account detection or customer lifetime value estimation,
are often tackled by models trained on features engineered from customer data
in tabular format. Application-specific feature engineering adds development,
operationalization and maintenance costs over time. Recent advances in
representation learning present an opportunity to simplify and generalize
feature engineering across applications. When applying these advancements to
tabular data researchers deal with data heterogeneity, variations in customer
engagement history or the sheer volume of enterprise datasets. In this paper,
we propose a novel approach to encode tabular data containing customer
transactions, purchase history and other interactions into a generic
representation of a customer's association with the business. We then evaluate
these embeddings as features to train multiple models spanning a variety of
applications. CASPR, Customer Activity Sequence-based Prediction and
Representation, applies Transformer architecture to encode activity sequences
to improve model performance and avoid bespoke feature engineering across
applications. Our experiments at scale validate CASPR for both small \& large
enterprise applications.
- Abstract(参考訳): 顧客チャーン予測、不正アカウント検出、顧客寿命価値推定といった企業の収益性に不可欠なタスクは、顧客データを表形式で設計した機能に基づいてトレーニングされたモデルによってしばしば取り組まれる。
アプリケーション固有の機能エンジニアリングは、開発、運用、メンテナンスのコストを時間とともに増やします。
近年の表現学習は,アプリケーションの機能工学を簡素化し,一般化する機会となっている。
これらの進歩を表型データ研究者に適用する場合、データの多様性、顧客エンゲージメント履歴のバリエーション、あるいはエンタープライズデータセットの膨大な量を扱う。
本稿では,顧客取引,購入履歴,その他のインタラクションを含む表形式のデータを,顧客とビジネスの関係の一般的な表現に符号化する手法を提案する。
そして、様々なアプリケーションにわたる複数のモデルをトレーニングする機能としてこれらの埋め込みを評価します。
CASPR(Customer Activity Sequence-based Prediction and Representation)は、Transformerアーキテクチャを適用して、アクティビティシーケンスをエンコードすることで、モデルパフォーマンスを改善し、アプリケーション全体の機能エンジニアリングを回避する。
当社の実験では、小規模および大規模のエンタープライズアプリケーションに対して、CASPRを検証しています。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - A Simple Baseline for Predicting Events with Auto-Regressive Tabular Transformers [70.20477771578824]
イベント予測への既存のアプローチには、タイムアウェアな位置埋め込み、学習行とフィールドエンコーディング、クラス不均衡に対処するオーバーサンプリング方法などがある。
基本位置埋め込みと因果言語モデリングの目的を持つ標準自己回帰型LPM変換器を用いて,単純だが柔軟なベースラインを提案する。
私たちのベースラインは、一般的なデータセットで既存のアプローチよりも優れており、さまざまなユースケースに使用することができます。
論文 参考訳(メタデータ) (2024-10-14T15:59:16Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
合成データセットを生成するCRAFT(Corpus Retrieval and Augmentation for Fine-Tuning)を提案する。
我々は、大規模な公開ウェブクローラコーパスと類似性に基づく文書検索を用いて、他の関連する人文文書を検索する。
我々は,CRAFTが4つのタスクに対して,大規模タスク固有のトレーニングデータセットを効率的に生成できることを実証した。
論文 参考訳(メタデータ) (2024-09-03T17:54:40Z) - Consumer Transactions Simulation through Generative Adversarial Networks [0.07373617024876725]
本稿では,合成小売取引データを生成するためのGAN(Generative Adversarial Networks)の革新的な応用について述べる。
我々は、SKUデータをGANアーキテクチャに統合し、より洗練された埋め込み手法を用いて従来の手法から切り離す。
その結果, 実物と実物を比較することで, シミュレーショントランザクションにおける現実性の向上が示された。
論文 参考訳(メタデータ) (2024-08-07T09:45:24Z) - Privacy Adhering Machine Un-learning in NLP [66.17039929803933]
現実の業界では、機械学習を使ってユーザデータに基づくモデルを構築します。
このような委任事項には、データだけでなく、モデルの再トレーニングにも労力が要る。
データの継続的な削除と モデル再訓練のステップはスケールしません
この課題に対処するために、textitMachine Unlearningを提案する。
論文 参考訳(メタデータ) (2022-12-19T16:06:45Z) - UserBERT: Modeling Long- and Short-Term User Preferences via
Self-Supervision [6.8904125699168075]
本稿では,BERTモデルを電子商取引ユーザデータに拡張し,自己教師型で表現を事前学習する。
文中の単語に類似したシーケンスでユーザアクションを見ることにより、既存のBERTモデルをユーザ行動データに拡張する。
本稿では,異なる種類のユーザ行動シーケンスのトークン化,入力表現の生成,および事前学習されたモデルが自身の入力から学習できるようにするための新しいプレテキストタスクを提案する。
論文 参考訳(メタデータ) (2022-02-14T08:31:36Z) - PreSizE: Predicting Size in E-Commerce using Transformers [76.33790223551074]
PreSizEは、Transformerを使って正確なサイズ予測を行う新しいディープラーニングフレームワークである。
我々は,PreSizEが従来の最先端のベースラインよりも優れた予測性能を実現できることを示した。
概念実証として、PreSizEによるサイズ予測が、既存の生産推奨システムに統合できることを実証しています。
論文 参考訳(メタデータ) (2021-05-04T15:23:59Z) - Friendship is All we Need: A Multi-graph Embedding Approach for Modeling
Customer Behavior [1.181206257787103]
顧客を非線形に表現するためのマルチグラフ埋め込み手法を提案する。
我々は,友人関係の情報を入手することでのみ,ユーザの将来の行動を合理的に予測することができる。
論文 参考訳(メタデータ) (2020-10-06T14:50:05Z) - Towards Intelligent Risk-based Customer Segmentation in Banking [0.0]
我々は、顧客のデータをあるシステムから別のシステムへ移動させるために、一連の処理要素からなるインテリジェントなデータ駆動パイプラインを提案する。
目標は、機能エンジニアリング、すなわち、(銀行化)ドメイン知識を使用して生データから特徴を抽出するプロセスを自動化する、新しいインテリジェントな顧客セグメンテーションプロセスを提供することである。
提案手法は,従来の手法に比べて91%の精度でトランザクションの検出,識別,分類を行うことができる。
論文 参考訳(メタデータ) (2020-09-29T11:22:04Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。