State Independent Nonadiabatic Geometric Quantum Gates
- URL: http://arxiv.org/abs/2211.09312v1
- Date: Thu, 17 Nov 2022 03:02:06 GMT
- Title: State Independent Nonadiabatic Geometric Quantum Gates
- Authors: Yan Liang, Pu Shen, Li-Na Ji, and Zheng Yuan Xue
- Abstract summary: We propose a state independent nonadiabatic geometric quantum gates scheme, which can realize a more fully geometric gate.
Our scheme provides a promising way for fault-tolerant quantum computation in atomic systems.
- Score: 2.8126458426164436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computation has demonstrated advantages over classical computation
for special hard problems, where a set of universal quantum gates is essential.
As geometric phases have built-in resilience for local noises, they can be
naturally used to construct quantum gates with excellent performance. However,
this was smeared previously. Here, we propose a state independent nonadiabatic
geometric quantum gates (SINGQC) scheme, which can realize a more fully
geometric gate compared with the previous ones, where dynamical phases
accumulated by an arbitrary state can be cancelled. Numerical simulation shows
that, our scheme has much stronger gate robustness than the previous geometric
and dynamical ones. Meanwhile, we give a detailed physical implementation of
our scheme with Rydberg atoms system based on the Rydberg blockade effect,
especially for the multiple-qubit control-phase gates, which exceeds the
fault-tolerance threshold of multi-qubit quantum gates within the considered
error range. Therefore, our scheme provides a promising way for fault-tolerant
quantum computation in atomic systems.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Geometric Quantum Machine Learning with Horizontal Quantum Gates [41.912613724593875]
We propose an alternative paradigm for the symmetry-informed construction of variational quantum circuits.
We achieve this by introducing horizontal quantum gates, which only transform the state with respect to the directions to those of the symmetry.
For a particular subclass of horizontal gates based on symmetric spaces, we can obtain efficient circuit decompositions for our gates through the KAK theorem.
arXiv Detail & Related papers (2024-06-06T18:04:39Z) - State-independent geometric quantum gates via nonadiabatic and noncyclic
evolution [10.356589142632922]
We propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths.
We show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path.
These high-trivial quantum gates are promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-09-04T02:55:58Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Path-optimized nonadiabatic geometric quantum computation on
superconducting qubits [3.98625523260655]
We propose a path-optimized scheme for geometric quantum computation on superconducting transmon qubits.
We find that the constructed geometric gates can be superior to their corresponding dynamical ones under different local errors.
Our scheme provides a new perspective for geometric quantum computation, making it more promising in the application of large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-12T15:26:26Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Nonadiabatic geometric quantum gates that are insensitive to
qubit-frequency drifts [8.750801670077806]
In the current implementation of nonadiabatic geometric phases, operational and/or random errors tend to destruct the conditions that induce geometric phases.
Here, we apply the path-design strategy to explain in detail why both configurations can realize universal quantum gates in a single-loop way.
Our scheme provides a promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
arXiv Detail & Related papers (2021-03-16T12:05:45Z) - High-fidelity geometric quantum gates with short paths on
superconducting circuits [5.666193021459319]
We propose a scheme to realize nonadiabatic geometric quantum gates with short paths based on simple pulse control techniques.
Specifically, we illustrate the idea on a superconducting quantum circuit, which is one of the most promising platforms for realizing practical quantum computer.
arXiv Detail & Related papers (2021-02-06T10:13:05Z) - Noncyclic Geometric Quantum Gates with Smooth Paths via Invariant-based
Shortcuts [4.354697470999286]
We propose a scheme to realize geometric quantum gates with noncyclic and nonadiabatic evolution via invariant-based shortcuts.
Our scheme provides a promising way to realize high-fidelity fault-tolerant quantum gates for scalable quantum computation.
arXiv Detail & Related papers (2021-02-01T15:05:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.