Beating the break-even point with a discrete-variable-encoded logical
qubit
- URL: http://arxiv.org/abs/2211.09319v2
- Date: Wed, 5 Apr 2023 23:54:25 GMT
- Title: Beating the break-even point with a discrete-variable-encoded logical
qubit
- Authors: Zhongchu Ni, Sai Li, Xiaowei Deng, Yanyan Cai, Libo Zhang, Weiting
Wang, Zhen-Biao Yang, Haifeng Yu, Fei Yan, Song Liu, Chang-Ling Zou, Luyan
Sun, Shi-Biao Zheng, Yuan Xu, Dapeng Yu
- Abstract summary: Quantum error correction (QEC) aims to protect logical qubits from noises by utilizing the redundancy of a large Hilbert space.
In most QEC codes, a logical qubit is encoded in some discrete variables, e.g., photon numbers.
Our work illustrates the potential of the hardware-efficient discrete-variable QEC codes towards a reliable quantum information processor.
- Score: 11.225411597366886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction (QEC) aims to protect logical qubits from noises by
utilizing the redundancy of a large Hilbert space, where an error, once it
occurs, can be detected and corrected in real time. In most QEC codes, a
logical qubit is encoded in some discrete variables, e.g., photon numbers. Such
encoding schemes make the codewords orthogonal, so that the encoded quantum
information can be unambiguously extracted after processing. Based on such
discrete-variable encodings, repetitive QEC demonstrations have been reported
on various platforms, but there the lifetime of the encoded logical qubit is
still shorter than that of the best available physical qubit in the entire
system, which represents a break-even point that needs to be surpassed for any
QEC code to be of practical use. Here we demonstrate a QEC procedure with a
logical qubit encoded in photon-number states of a microwave cavity,
dispersively coupled to an ancilla superconducting qubit. By applying a pulse
featuring a tailored frequency comb to the ancilla, we can repetitively extract
the error syndrome with high fidelity and perform error correction with
feedback control accordingly, thereby exceeding the break-even point by about
16% lifetime enhancement. Our work illustrates the potential of the
hardware-efficient discrete-variable QEC codes towards a reliable quantum
information processor.
Related papers
- Fault-Tolerant Belief Propagation for Practical Quantum Memory [6.322831694506286]
A fault-tolerant approach to reliable quantum memory is essential for scalable quantum computing.
We propose a decoder that utilizes a space-time Tanner graph across multiple rounds of syndrome extraction with mixed-alphabet error variables.
Our simulations demonstrate high error thresholds of 0.4%-0.87% and strong error-floor performance for topological code families.
arXiv Detail & Related papers (2024-09-27T12:21:45Z) - Ambiguity Clustering: an accurate and efficient decoder for qLDPC codes [0.0]
We introduce Ambiguity Clustering (AC), an algorithm which seeks to divide measurement data into clusters which are decoded independently.
AC is between one and three orders of magnitude faster than BP-OSD with no reduction in logical fidelity.
Our CPU implementation of AC is already fast enough to decode the 144-qubit Gross code in real time for neutral atom and trapped ion systems.
arXiv Detail & Related papers (2024-06-20T17:39:31Z) - Demonstration of fault-tolerant Steane quantum error correction [0.7174990929661688]
This study presents the implementation of multiple rounds of fault-tolerant Steane QEC on a trapped-ion quantum computer.
Various QEC codes are employed, and the results are compared to a previous experimental approach utilizing flag qubits.
arXiv Detail & Related papers (2023-12-15T12:32:49Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Overcoming leakage in scalable quantum error correction [128.39402546769284]
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC)
Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle.
We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 times 10-3$ throughout the entire device.
arXiv Detail & Related papers (2022-11-09T07:54:35Z) - Quantum Error Correction via Noise Guessing Decoding [0.0]
Quantum error correction codes (QECCs) play a central role in both quantum communications and quantum computation.
This paper shows that it is possible to both construct and decode QECCs that can attain the maximum performance of the finite blocklength regime.
arXiv Detail & Related papers (2022-08-04T16:18:20Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Dense Coding with Locality Restriction for Decoder: Quantum Encoders vs.
Super-Quantum Encoders [67.12391801199688]
We investigate dense coding by imposing various locality restrictions to our decoder.
In this task, the sender Alice and the receiver Bob share an entangled state.
arXiv Detail & Related papers (2021-09-26T07:29:54Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.