論文の概要: Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
- arxiv url: http://arxiv.org/abs/2211.09321v2
- Date: Tue, 2 Apr 2024 00:33:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:11:24.457865
- Title: Interpretable Dimensionality Reduction by Feature Preserving Manifold Approximation and Projection
- Title(参考訳): 特徴保存マニフォールド近似と投影による解釈可能な次元化
- Authors: Yang Yang, Hongjian Sun, Jialei Gong, Di Yu,
- Abstract要約: achievementMAPは、それらを低次元の埋め込み空間に埋め込むことで、ソースの特徴を保存する。
我々は、桁分類、オブジェクト検出、MNIST対逆例の解釈にdeadMAPを適用した。
- 参考スコア(独自算出の注目度): 6.957709719988906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear dimensionality reduction lacks interpretability due to the absence of source features in low-dimensional embedding space. We propose an interpretable method featMAP to preserve source features by tangent space embedding. The core of our proposal is to utilize local singular value decomposition (SVD) to approximate the tangent space which is embedded to low-dimensional space by maintaining the alignment. Based on the embedding tangent space, featMAP enables the interpretability by locally demonstrating the source features and feature importance. Furthermore, featMAP embeds the data points by anisotropic projection to preserve the local similarity and original density. We apply featMAP to interpreting digit classification, object detection and MNIST adversarial examples. FeatMAP uses source features to explicitly distinguish the digits and objects and to explain the misclassification of adversarial examples. We also compare featMAP with other state-of-the-art methods on local and global metrics.
- Abstract(参考訳): 非線形次元の減少は、低次元埋め込み空間における音源特徴の欠如による解釈可能性に欠ける。
そこで本研究では,タンジェント空間埋め込みによるソース特徴の保存のための解釈可能なdeadMAPを提案する。
提案手法の中核は局所特異値分解(SVD)を用いて、アライメントを維持することにより、低次元空間に埋め込まれた接空間を近似することである。
埋め込み接点空間に基づいて、deadMAPは、ソースの特徴と特徴の重要性を局所的に示すことによって、解釈可能性を実現する。
さらに、deactMAPは、局所的な類似性と元の密度を維持するために、異方性投射によってデータポイントを埋め込む。
我々は、桁分類、オブジェクト検出、MNIST対逆例の解釈にdeadMAPを適用した。
FeatMAPは、ソース機能を使用して、数字とオブジェクトを明確に区別し、敵の例の誤分類を説明する。
また,局所的および大域的メトリクスに関する他の最先端手法との比較を行った。
関連論文リスト
- Thinner Latent Spaces: Detecting dimension and imposing invariance through autoencoder gradient constraints [9.380902608139902]
ネットワークの潜在層内の直交関係を利用して、非線形多様体データセットの内在次元性を推定できることを示す。
微分幾何学に依拠する関係理論を概説し、対応する勾配偏光最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-08-28T20:56:35Z) - CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction [0.0]
データ次元を減少させるために次元性低減法が用いられる。
本研究は,次元削減のためのクラスタリングに基づくアプローチであるCBMAPを紹介する。
CBMAPは、大域的構造と局所的構造の両方を保存することを目的としており、低次元空間のクラスターが高次元空間のクラスタと密接に類似していることを保証する。
論文 参考訳(メタデータ) (2024-04-27T15:44:21Z) - Towards the Uncharted: Density-Descending Feature Perturbation for Semi-supervised Semantic Segmentation [51.66997548477913]
本稿では,DDFP(Dedentity-Descending Feature Perturbation)という特徴レベルの一貫性学習フレームワークを提案する。
半教師付き学習における低密度分離仮定にインスパイアされた私たちの重要な洞察は、特徴密度はセグメンテーション分類器が探索する最も有望な方向の光を放つことができるということである。
提案したDFFPは、機能レベルの摂動に関する他の設計よりも優れており、Pascal VOCとCityscapesのデータセット上でのアートパフォーマンスの状態を示している。
論文 参考訳(メタデータ) (2024-03-11T06:59:05Z) - Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities [0.0]
クラス条件付き多様体学習手法の弱点を定量的かつ視覚的に示す。
本稿では,ランダムな森の近さをデータジオメトリ保存した変種を用いて,教師付き次元減少のためのカーネルの代替選択を提案する。
論文 参考訳(メタデータ) (2023-07-03T14:55:11Z) - An Integral Projection-based Semantic Autoencoder for Zero-Shot Learning [0.46644955105516456]
ゼロショット学習(ZSL)分類は、トレーニングセットに含まれないクラス(ラベル)を分類または予測する(見えないクラス)。
近年の研究では、エンコーダが視覚的特徴空間をセマンティック空間に埋め込み、デコーダが元の視覚的特徴空間を再構成する、異なる意味的オートエンコーダ(SAE)モデルが提案されている。
本稿では,意味空間でベクトル化された視覚的特徴空間を潜在表現空間に投影する統合投影型セマンティックオートエンコーダ(IP-SAE)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:06:20Z) - Learning Implicit Feature Alignment Function for Semantic Segmentation [51.36809814890326]
Implicit Feature Alignment Function (IFA)は、暗黙の神経表現の急速に拡大するトピックにインスパイアされている。
IFAは機能マップを異なるレベルで暗黙的に整列し、任意の解像度でセグメンテーションマップを生成することができることを示す。
提案手法は,様々なアーキテクチャの改善と組み合わせて,一般的なベンチマークにおける最先端の精度のトレードオフを実現する。
論文 参考訳(メタデータ) (2022-06-17T09:40:14Z) - Unveiling The Mask of Position-Information Pattern Through the Mist of
Image Features [75.62755703738696]
近年の研究では、畳み込みニューラルネットワークにおけるパディングが絶対位置情報を符号化していることが示されている。
位置情報の強度を定量化する既存の指標は信頼性が低いままである。
符号化された位置情報を計測(および可視化)するための新しい指標を提案する。
論文 参考訳(メタデータ) (2022-06-02T17:59:57Z) - Analyzing the Latent Space of GAN through Local Dimension Estimation [4.688163910878411]
高忠実度画像合成におけるスタイルベースGAN(StyleGAN)は、それらの潜在空間の意味的特性を理解するために研究の動機となっている。
事前学習したGANモデルにおける任意の中間層に対する局所次元推定アルゴリズムを提案する。
提案した計量はDistortionと呼ばれ、学習された潜在空間上の内在空間の不整合を測定する。
論文 参考訳(メタデータ) (2022-05-26T06:36:06Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
本研究は, カテゴリーラベルのみを監督として, 正確な対象位置分布マップと対象境界を抽出する, 新たな自己強調手法を提案する。
特に、提案されたセルフエンハンスメントマップは、ILSVRC上で54.88%の最先端のローカライゼーション精度を達成する。
論文 参考訳(メタデータ) (2020-06-09T12:35:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。