論文の概要: Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities
- arxiv url: http://arxiv.org/abs/2307.01077v1
- Date: Mon, 3 Jul 2023 14:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-05 12:41:38.805645
- Title: Supervised Manifold Learning via Random Forest Geometry-Preserving
Proximities
- Title(参考訳): ランダムフォレスト幾何保存による教師あり多様体学習
- Authors: Jake S. Rhodes
- Abstract要約: クラス条件付き多様体学習手法の弱点を定量的かつ視覚的に示す。
本稿では,ランダムな森の近さをデータジオメトリ保存した変種を用いて,教師付き次元減少のためのカーネルの代替選択を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manifold learning approaches seek the intrinsic, low-dimensional data
structure within a high-dimensional space. Mainstream manifold learning
algorithms, such as Isomap, UMAP, $t$-SNE, Diffusion Map, and Laplacian
Eigenmaps do not use data labels and are thus considered unsupervised. Existing
supervised extensions of these methods are limited to classification problems
and fall short of uncovering meaningful embeddings due to their construction
using order non-preserving, class-conditional distances. In this paper, we show
the weaknesses of class-conditional manifold learning quantitatively and
visually and propose an alternate choice of kernel for supervised
dimensionality reduction using a data-geometry-preserving variant of random
forest proximities as an initialization for manifold learning methods. We show
that local structure preservation using these proximities is near universal
across manifold learning approaches and global structure is properly maintained
using diffusion-based algorithms.
- Abstract(参考訳): マニフォールド学習アプローチは、高次元空間内の本質的で低次元のデータ構造を求める。
Isomap, UMAP, $t$-SNE, Diffusion Map, Laplacian Eigenmapsなどの主流多様体学習アルゴリズムはデータラベルを使用しないため、教師なしとみなされる。
これらの手法の既存の教師付き拡張は分類問題に限定されており、順序非保存、クラス条件距離を用いた構成のために意味のある埋め込みを発見できない。
本稿では,クラス条件付き多様体学習の弱さを定量的かつ視覚的に示すとともに,データジオメトリ保存変種を用いた教師付き次元減少のためのカーネルの選択を,多様体学習法の初期化として提案する。
これらの近位を用いた局所構造保存は多様体学習のアプローチでほぼ普遍的であり,大域構造は拡散に基づくアルゴリズムを用いて適切に維持されている。
関連論文リスト
- Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - CBMAP: Clustering-based manifold approximation and projection for dimensionality reduction [0.0]
データ次元を減少させるために次元性低減法が用いられる。
本研究は,次元削減のためのクラスタリングに基づくアプローチであるCBMAPを紹介する。
CBMAPは、大域的構造と局所的構造の両方を保存することを目的としており、低次元空間のクラスターが高次元空間のクラスタと密接に類似していることを保証する。
論文 参考訳(メタデータ) (2024-04-27T15:44:21Z) - Scalable manifold learning by uniform landmark sampling and constrained
locally linear embedding [0.6144680854063939]
本研究では,大規模・高次元データを効率的に操作できるスケーラブルな多様体学習法を提案する。
異なるタイプの合成データセットと実世界のベンチマークにおけるSCMLの有効性を実証的に検証した。
scMLはデータサイズや埋め込み次元の増大とともにスケールし、グローバル構造を保存する上で有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-01-02T08:43:06Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Genetic Programming for Manifold Learning: Preserving Local Topology [5.226724669049025]
本稿では,局所的なトポロジを保存する多様体学習に遺伝的プログラミングを用いる新しい手法を提案する。
これは,地域構造(トポロジー)が最重要課題であるタスクにおいて,大幅な性能向上が期待できる。
論文 参考訳(メタデータ) (2021-08-23T03:48:48Z) - Quadric hypersurface intersection for manifold learning in feature space [52.83976795260532]
適度な高次元と大きなデータセットに適した多様体学習技術。
この手法は、二次超曲面の交点という形で訓練データから学習される。
テスト時、この多様体は任意の新しい点に対する外れ値スコアを導入するのに使うことができる。
論文 参考訳(メタデータ) (2021-02-11T18:52:08Z) - Functorial Manifold Learning [1.14219428942199]
まず、擬似距離空間を最適化対象にマッピングする関手として多様体学習アルゴリズムを特徴付ける。
次に、この特徴付けを用いて、多様体学習損失関数の洗練された境界を証明し、多様体学習アルゴリズムの階層を構築する。
我々は,この階層の異なるレベルにおける函手として,計量多次元スケーリング,IsoMap,UMAPなど,いくつかの一般的な多様体学習アルゴリズムを表現している。
論文 参考訳(メタデータ) (2020-11-15T02:30:23Z) - Extendable and invertible manifold learning with geometry regularized
autoencoders [9.742277703732187]
データ探索における基本的な課題は、データ内の固有幾何学をキャプチャする単純化された低次元表現を抽出することである。
このタスクに対する一般的なアプローチは、多様体学習にカーネルメソッドを使用する。
オートエンコーダのボトルネックに幾何正規化項を組み込むことにより,両手法を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T15:59:10Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Deep Metric Structured Learning For Facial Expression Recognition [58.7528672474537]
本研究では,よく定義された構造を持つ組込み部分空間を作成するための深度計量学習モデルを提案する。
これらの部分空間を作成するために、出力空間上にガウス構造を課す新しい損失関数が導入された。
学習した埋め込みは,表現検索や感情認識など,様々な応用に有効であることが実験的に実証された。
論文 参考訳(メタデータ) (2020-01-18T06:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。