Quantum Approximate Optimization Algorithm Parameter Prediction Using a
Convolutional Neural Network
- URL: http://arxiv.org/abs/2211.09513v1
- Date: Thu, 17 Nov 2022 13:20:58 GMT
- Title: Quantum Approximate Optimization Algorithm Parameter Prediction Using a
Convolutional Neural Network
- Authors: Ningyi Xie, Xinwei Lee, Dongsheng Cai, Yoshiyuki Saito, Nobuyoshi Asai
- Abstract summary: We build a convolutional neural network to predict parameters of depth $p+1$ QAOA by the parameters from the depth $p$ QAOA counterpart.
An average approximation ratio of 92735$ for Max-Cut over $800$ ErdHos-R'enyi is obtained.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum approximate optimization algorithm (QAOA) is a quantum-classical
hybrid algorithm aiming to produce approximate solutions for combinatorial
optimization problems. In the QAOA, the quantum part prepares a quantum
parameterized state that encodes the solution, where the parameters are
optimized by a classical optimizer. However, it is difficult to find optimal
parameters when the quantum circuit becomes deeper. Hence, there is numerous
active research on the performance and the optimization cost of QAOA. In this
work, we build a convolutional neural network to predict parameters of depth
$p+1$ QAOA instance by the parameters from the depth $p$ QAOA counterpart. We
propose two strategies based on this model. First, we recurrently apply the
model to generate a set of initial values for a certain depth QAOA. It
successfully initiates depth $10$ QAOA instances, whereas each model is only
trained with the parameters from depths less than $6$. Second, the model is
applied repetitively until the maximum expected value is reached. An average
approximation ratio of $0.9735$ for Max-Cut over $800$ Erd\H{o}s-R\'{e}nyi
graphs is obtained, while the optimizer is only adopted for generating the
first input of the model.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - A Parameter Setting Heuristic for the Quantum Alternating Operator
Ansatz [0.0]
We introduce a strategy for parameter setting suitable for common cases in which the number of distinct cost values grows onlyly with the problem size.
We define a Classical Homogeneous Proxy for QAOA in which Perfect Homogeneity holds exactly, and which yields information describing both states and expectation values.
For up to $3$ QAOA levels we are easily able to find parameters that match approximation ratios returned by previous globally optimized approaches.
arXiv Detail & Related papers (2022-11-17T00:18:06Z) - The QAOA with Few Measurements [4.713817702376467]
The Approximate Quantum Optimization Algorithm (QAOA) was originally developed to solve optimization problems.
Fully descriptive benchmarking techniques are often expensive for large numbers of qubits.
Some experimental quantum computing platforms such as neutral atom quantum computers have slow repetition rates.
arXiv Detail & Related papers (2022-05-13T18:42:20Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
Proposed hybrid algorithms encode a cost function into a problem Hamiltonian and optimize its energy by varying over a set of states with low circuit complexity.
We show that for levels $p=2,ldots, 6$, the level $p$ can be reduced by one while roughly maintaining the expected approximation ratio.
arXiv Detail & Related papers (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
We study unsupervised Machine Learning approaches for setting parameters without optimization.
We showcase them within Recursive-QAOA up to depth $3$ where the number of QAOA parameters used per iteration is limited to $3$.
We obtain similar performances to the case where we extensively optimize the angles, hence saving numerous circuit calls.
arXiv Detail & Related papers (2022-02-18T19:55:42Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Accelerating Quantum Approximate Optimization Algorithm using Machine
Learning [6.735657356113614]
We propose a machine learning based approach to accelerate quantum approximate optimization algorithm (QAOA) implementation.
QAOA is a quantum-classical hybrid algorithm to prove the so-called quantum supremacy.
We show that the proposed approach can curtail the number of optimization iterations by up to 65.7%) from an analysis performed with 264 flavors of graphs.
arXiv Detail & Related papers (2020-02-04T02:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.