論文の概要: Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems
- arxiv url: http://arxiv.org/abs/2211.09719v1
- Date: Tue, 1 Nov 2022 22:08:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 14:00:11.090623
- Title: Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems
- Title(参考訳): 多目的最適化問題の解法における適応進化計算の学習
- Authors: Remco Coppens, Robbert Reijnen, Yingqian Zhang, Laurens Bliek, Berend
Steenhuisen
- Abstract要約: 本稿では, 深層強化学習(DRL)を用いた適応パラメータ制御とMOEAを統合したフレームワークを提案する。
DRLポリシは、最適化中のソリューションに対する突然変異の強度と確率を決定する値を適応的に設定するように訓練されている。
学習されたポリシーは転送可能であることを示す。つまり、単純なベンチマーク問題で訓練されたポリシーは、複雑な倉庫最適化問題を解決するために直接適用可能である。
- 参考スコア(独自算出の注目度): 3.3266268089678257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-objective evolutionary algorithms (MOEAs) are widely used to solve
multi-objective optimization problems. The algorithms rely on setting
appropriate parameters to find good solutions. However, this parameter tuning
could be very computationally expensive in solving non-trial (combinatorial)
optimization problems. This paper proposes a framework that integrates MOEAs
with adaptive parameter control using Deep Reinforcement Learning (DRL). The
DRL policy is trained to adaptively set the values that dictate the intensity
and probability of mutation for solutions during optimization. We test the
proposed approach with a simple benchmark problem and a real-world, complex
warehouse design and control problem. The experimental results demonstrate the
advantages of our method in terms of solution quality and computation time to
reach good solutions. In addition, we show the learned policy is transferable,
i.e., the policy trained on a simple benchmark problem can be directly applied
to solve the complex warehouse optimization problem, effectively, without the
need for retraining.
- Abstract(参考訳): 多目的進化アルゴリズム(MOEA)は多目的最適化問題の解法として広く用いられている。
アルゴリズムは良い解を見つけるために適切なパラメータを設定することに依存する。
しかし、このパラメータチューニングは、非決定的(組合せ的)最適化問題の解決に非常に計算コストがかかる可能性がある。
本稿では,Deep Reinforcement Learning (DRL) を用いた適応パラメータ制御とMOEAを統合したフレームワークを提案する。
DRLポリシは、最適化中のソリューションに対する突然変異の強度と確率を決定する値を適応的に設定するように訓練されている。
提案手法は,単純なベンチマーク問題と,現実の複雑な倉庫設計・制御問題を用いて検証する。
実験の結果,優れた解を得るための解の質と計算時間の観点から,本手法の利点を実証した。
さらに, 学習方針は伝達可能であることを示す。つまり, 単純なベンチマーク問題で訓練されたポリシーを直接適用して, 複雑な倉庫最適化問題の解決を効果的に行うことができる。
関連論文リスト
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - RIGA: A Regret-Based Interactive Genetic Algorithm [14.388696798649658]
そこで本研究では,多目的最適化問題を優先的精度で解くための対話型遺伝的アルゴリズムを提案する。
我々のアルゴリズムはRIGAと呼ばれ、集約関数がパラメータ内で線形であることから、任意の多目的最適化問題に適用できる。
いくつかのパフォーマンス指標(計算時間、最適性とクエリ数のギャップ)に対して、RIGAは最先端のアルゴリズムよりも優れた結果を得る。
論文 参考訳(メタデータ) (2023-11-10T13:56:15Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
我々は、新しい強化学習手法を用いて、人気のあるWordleパズルの解法に対処する。
Wordleパズルでは、比較的控えめな計算コストで最適に近いオンラインソリューション戦略が得られる。
論文 参考訳(メタデータ) (2022-11-15T03:46:41Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
提案アルゴリズムは,実モデルのモデルによって定義される一連の代理問題の解法に基づく。
また,最適化ランドスケープのための最適なサロゲートモデルとナビゲーション戦略のメタ検索を行う。
論文 参考訳(メタデータ) (2021-03-19T11:18:03Z) - Learning to Optimize Under Constraints with Unsupervised Deep Neural
Networks [0.0]
機械学習(ML)手法を提案し,汎用的制約付き連続最適化問題の解法を学習する。
本稿では,制約付き最適化問題をリアルタイムに解くための教師なしディープラーニング(DL)ソリューションを提案する。
論文 参考訳(メタデータ) (2021-01-04T02:58:37Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
複数の異なる損失を最小化しなければならない最適化問題を考える。
提案手法は、各イテレーションにおける降下方向を計算し、目的関数の相対的減少を等しく保証する。
論文 参考訳(メタデータ) (2020-07-14T09:50:33Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。