論文の概要: Optimal service station design for traffic mitigation via genetic
algorithm and neural network
- arxiv url: http://arxiv.org/abs/2211.10159v1
- Date: Fri, 18 Nov 2022 11:11:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 13:58:32.958639
- Title: Optimal service station design for traffic mitigation via genetic
algorithm and neural network
- Title(参考訳): 遺伝的アルゴリズムとニューラルネットワークによる交通緩和のための最適サービスステーション設計
- Authors: Carlo Cenedese, Michele Cucuzzella, Adriano Cotta Ramusino, Davide
Spalenza, John Lygeros, Antonella Ferrara
- Abstract要約: 交通渋滞とピークトラフィック減少の両面から,サービスステーションを最適に設計し,良好な効果を得られるか,という課題に着目する。
本稿では,最近提案されたCTMに基づく遺伝的アルゴリズムを提案する。
我々はアルゴリズムを利用して、同じ問題を解決することができるニューラルネットワークを訓練し、CTMの実装を避けます。
- 参考スコア(独自算出の注目度): 3.7597202216941783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper analyzes how the presence of service stations on highways affects
traffic congestion. We focus on the problem of optimally designing a service
station to achieve beneficial effects in terms of total traffic congestion and
peak traffic reduction. Microsimulators cannot be used for this task due to
their computational inefficiency. We propose a genetic algorithm based on the
recently proposed CTMs, that efficiently describes the dynamics of a service
station. Then, we leverage the algorithm to train a neural network capable of
solving the same problem, avoiding implementing the CTMs. Finally, we examine
two case studies to validate the capabilities and performance of our
algorithms. In these simulations, we use real data extracted from Dutch
highways.
- Abstract(参考訳): 本稿では,高速道路におけるサービスステーションの存在が交通渋滞に与える影響を分析する。
交通渋滞とピークトラフィック減少の両面から,サービスステーションを最適に設計し,良好な効果を得られるか,という課題に着目する。
マイクロシミュレータは計算不効率のため、このタスクには使用できない。
本稿では,最近提案されたCTMに基づく遺伝的アルゴリズムを提案する。
そして、アルゴリズムを利用して、同じ問題を解決することができるニューラルネットワークをトレーニングし、CTMの実装を避けます。
最後に,アルゴリズムの性能と性能を検証する2つのケーススタディについて検討する。
これらのシミュレーションでは,オランダの高速道路から抽出した実データを用いる。
関連論文リスト
- Preventing Local Pitfalls in Vector Quantization via Optimal Transport [77.15924044466976]
我々はシンクホーンアルゴリズムを用いて最適な輸送問題を最適化する新しいベクトル量子化法であるOptVQを紹介する。
画像再構成タスクの実験では,OptVQが100%のコードブック利用を実現し,現在最先端のVQNを超越していることが示された。
論文 参考訳(メタデータ) (2024-12-19T18:58:14Z) - Leveraging Neo4j and deep learning for traffic congestion simulation &
optimization [0.0]
渋滞や事故の場合に交通が後進的に伝播し,道路の他の部分への全体的影響を示す。
また、実時間トラフィックデータに基づいて連続的なRNN-LSTM(Long Short-Term Memory)ディープラーニングモデルを訓練し、道路固有の渋滞に基づいてシミュレーション結果の精度を評価する。
論文 参考訳(メタデータ) (2023-04-01T01:23:10Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
本稿では,数百台の車両による大規模道路網における交通流を効率的にシミュレートし,最適化する枠組みを提案する。
このフレームワークは、Answer Set Programming (ASP)エンコーディングを利用して、ネットワーク内の車両の動きを正式に記述する。
これにより、ネットワーク内の車両の経路を最適化し、関連するメトリクスの幅を減らすことができる。
論文 参考訳(メタデータ) (2022-08-05T10:50:38Z) - Dynamic Origin-Destination Matrix Estimation in Urban Traffic Networks [0.05735035463793007]
この問題を二段階最適化問題としてモデル化する。
内部レベルでは、暫定的な旅行需要を前提として、動的な交通割当問題を解決し、利用者の出身地と目的地間のルーティングを決定する。
外層部では,交通ネットワーク内のセンサによって測定された車両数と内層部で発生したカウンタの差を最小限に抑えることを目的として,旅行数とその出発点および目的地の調整を行う。
論文 参考訳(メタデータ) (2022-01-31T21:33:46Z) - Neural Optimal Transport [82.2689844201373]
本稿では、最適な輸送マップを計算し、強力で弱い輸送コストを計画するニューラルネットベースの新しいアルゴリズムを提案する。
ニューラルネットワークが確率分布間の輸送計画の普遍的近似であることを示す。
論文 参考訳(メタデータ) (2022-01-28T16:24:13Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - Do Neural Optimal Transport Solvers Work? A Continuous Wasserstein-2
Benchmark [133.46066694893318]
最適輸送のためのニューラルネットワークに基づく解法の性能を評価する。
既存の解法では,下流タスクでは良好に機能するにもかかわらず,最適な輸送マップを復元できないことがわかった。
論文 参考訳(メタデータ) (2021-06-03T15:59:28Z) - Surrogate-assisted cooperative signal optimization for large-scale
traffic networks [6.223837701805064]
本研究では,サロゲート支援協調信号最適化(SCSO)手法を提案する。
ニューマン・ファスト・アルゴリズムを用いて,分散アルゴリズムを分解器,代理モデル,具体的SCSOアルゴリズムとして修正した。
その有効性と有効性を評価するため、実際の交通ネットワークに基づいて、クロスロードとTジャンクションを含む大規模交通ネットワークを生成する。
論文 参考訳(メタデータ) (2021-03-03T01:03:57Z) - Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line
and Off-policy Bandit Solutions [30.606518785629046]
高速変動車体環境では、ネットワークの混雑によりオフロードの遅延が発生する。
本稿では,バンディット理論に基づくオンラインアルゴリズムと非政治学習アルゴリズムを提案する。
提案手法は,最も混雑の少ないネットワークを選択することで,ネットワークのトラフィック変化に適応することを示す。
論文 参考訳(メタデータ) (2020-08-14T11:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。