論文の概要: Neural Optimal Transport
- arxiv url: http://arxiv.org/abs/2201.12220v1
- Date: Fri, 28 Jan 2022 16:24:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 15:36:16.620835
- Title: Neural Optimal Transport
- Title(参考訳): 神経の最適輸送
- Authors: Alexander Korotin, Daniil Selikhanovych, Evgeny Burnaev
- Abstract要約: 本稿では、最適な輸送マップを計算し、強力で弱い輸送コストを計画するニューラルネットベースの新しいアルゴリズムを提案する。
ニューラルネットワークが確率分布間の輸送計画の普遍的近似であることを示す。
- 参考スコア(独自算出の注目度): 82.2689844201373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel neural-networks-based algorithm to compute optimal
transport maps and plans for strong and weak transport costs. To justify the
usage of neural networks, we prove that they are universal approximators of
transport plans between probability distributions. We evaluate the performance
of our optimal transport algorithm on toy examples and on the unpaired
image-to-image style translation task.
- Abstract(参考訳): 本稿では,最適輸送マップの計算を行うニューラルネットワークに基づく新しいアルゴリズムと,強い輸送コストと弱い輸送コストの計画を提案する。
ニューラルネットワークの利用を正当化するために、確率分布間の輸送計画の普遍的な近似であることを示す。
我々は,おもちゃの例や未完成画像から画像への翻訳作業において,最適な輸送アルゴリズムの性能を評価する。
関連論文リスト
- Improving Neural Optimal Transport via Displacement Interpolation [16.474572112062535]
最適輸送(OT)理論は、ソース分布をターゲット分布に移動させるコスト最小化輸送マップを考察する。
本稿では, 安定度を向上し, 変位を利用した OT Map の近似性を向上する手法を提案する。
画像から画像への変換タスクにおいて,DIOTMが既存のOTベースモデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-03T16:42:23Z) - Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference [1.740133468405535]
静的および条件付き最適輸送(COT)問題の解を近似する2つのニューラルネットワークアプローチを提案する。
我々は、ベンチマークデータセットとシミュレーションに基づく逆問題を用いて、両アルゴリズムを競合する最先端のアプローチと比較する。
論文 参考訳(メタデータ) (2023-10-25T20:20:09Z) - Computing high-dimensional optimal transport by flow neural networks [22.320632565424745]
この研究はフローベースモデルを開発し、P$から任意の$Q$に転送する。
本稿では,フローニューラルネットワークのトレーニングにより,$P$と$Q$の間の動的最適輸送を学習することを提案する。
訓練された最適輸送流はその後、無限小密度推定(DRE)や、生成モデルのための潜在空間における分布を含む多くの下流タスクを実行することができる。
論文 参考訳(メタデータ) (2023-05-19T17:48:21Z) - Neural Optimal Transport with General Cost Functionals [66.41953045707172]
一般費用関数の最適輸送計画を計算するニューラルネットワークに基づく新しいアルゴリズムを提案する。
アプリケーションとして,クラス単位の構造を保ちながら,データ分布をマップするコスト関数を構築した。
論文 参考訳(メタデータ) (2022-05-30T20:00:19Z) - Kernel Neural Optimal Transport [82.2689844201373]
一般最適輸送定式化を用いたニューラル最適輸送(NOT)アルゴリズムについて検討し,輸送計画の学習を行う。
2次コストの弱いNOTは、最適でない偽の計画を学ぶ可能性がある。
理論的保証と実用性能の向上を図っている。
論文 参考訳(メタデータ) (2022-05-30T17:26:06Z) - GAN Estimation of Lipschitz Optimal Transport Maps [0.0]
本稿では,ニューラルネットワークに基づく2つの確率分布間の最適輸送マップの統計的に一貫した最初の推定手法を提案する。
正則性仮定の下で、得られた生成元は、サンプルサイズが無限大に増加するにつれて、最適輸送写像に一様収束することを示した。
統計的保証や実用性に対処する従来の作業とは対照的に、最適な輸送用途に道を開くための表現的かつ実現可能な推定器を提供する。
論文 参考訳(メタデータ) (2022-02-16T10:15:56Z) - Score-based Generative Neural Networks for Large-Scale Optimal Transport [15.666205208594565]
場合によっては、最適な輸送計画は、ソースサポートからターゲットサポートへの1対1のマッピングの形を取る。
代わりに、ソースとターゲット分布のカップリングを解いた最適輸送の正規化形態であるシンクホーン問題について検討する。
本稿では,2つの分布間のシンクホーン結合をスコアベース生成モデルで学習するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-10-07T07:45:39Z) - Optimal transport in multilayer networks [68.8204255655161]
本稿では,各層上の最適フローが,コストの最小化に寄与するモデルを提案する。
アプリケーションとして,各層が異なる輸送システムに関連付けられている交通ネットワークを考察する。
この結果の例をボルドー市とバスと路面電車の2層ネットワークで示し、ある状況下では路面電車網の存在が道路網の交通を著しく覆い隠している。
論文 参考訳(メタデータ) (2021-06-14T07:33:09Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
コーン制約のある凸最適化プログラムを解くことにより,グローバルな2層ReLUニューラルネットワークの探索が可能であることを示す。
我々の分析は新しく、全ての最適解を特徴づけ、最近、ニューラルネットワークのトレーニングを凸空間に持ち上げるために使われた双対性に基づく分析を活用できない。
論文 参考訳(メタデータ) (2020-06-10T15:38:30Z) - Feature Robust Optimal Transport for High-dimensional Data [125.04654605998618]
本研究では,高次元データに対する特徴量ロバスト最適輸送(FROT)を提案する。
実世界の意味対応データセットにおいて,FROTアルゴリズムが最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2020-05-25T14:07:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。