Adversarial Detection by Approximation of Ensemble Boundary
- URL: http://arxiv.org/abs/2211.10227v5
- Date: Fri, 10 Jan 2025 16:08:47 GMT
- Title: Adversarial Detection by Approximation of Ensemble Boundary
- Authors: T. Windeatt,
- Abstract summary: Adversarial attacks lead to defences that are themselves subject to attack.
In this paper, a novel method of detecting adversarial attacks is proposed for an ensemble of Deep Neural Networks (DNNs) solving two-class pattern recognition problems.
- Score: 0.0
- License:
- Abstract: Despite being effective in many application areas, Deep Neural Networks (DNNs) are vulnerable to being attacked. In object recognition, the attack takes the form of a small perturbation added to an image, that causes the DNN to misclassify, but to a human appears no different. Adversarial attacks lead to defences that are themselves subject to attack, and the attack/ defence strategies provide important information about the properties of DNNs. In this paper, a novel method of detecting adversarial attacks is proposed for an ensemble of Deep Neural Networks (DNNs) solving two-class pattern recognition problems. The ensemble is combined using Walsh coefficients which are capable of approximating Boolean functions and thereby controlling the decision boundary complexity. The hypothesis in this paper is that decision boundaries with high curvature allow adversarial perturbations to be found, but change the curvature of the decision boundary, which is then approximated in a different way by Walsh coefficients compared to the clean images. Besides controlling boundary complexity, the coefficients also measure the correlation with class labels, which may aid in understanding the learning and transferability properties of DNNs. While the experiments here use images, the proposed approach of modelling two-class ensemble decision boundaries could in principle be applied to any application area.
Related papers
- Compositional Curvature Bounds for Deep Neural Networks [7.373617024876726]
A key challenge that threatens the widespread use of neural networks in safety-critical applications is their vulnerability to adversarial attacks.
We study the second-order behavior of continuously differentiable deep neural networks, focusing on robustness against adversarial perturbations.
We introduce a novel algorithm to analytically compute provable upper bounds on the second derivative of neural networks.
arXiv Detail & Related papers (2024-06-07T17:50:15Z) - Explainability-Based Adversarial Attack on Graphs Through Edge
Perturbation [1.6385815610837167]
We investigate the impact of test time adversarial attacks through edge perturbations which involve both edge insertions and deletions.
A novel explainability-based method is proposed to identify important nodes in the graph and perform edge perturbation between these nodes.
Results suggest that introducing edges between nodes of different classes has higher impact as compared to removing edges among nodes within the same class.
arXiv Detail & Related papers (2023-12-28T17:41:30Z) - Imperceptible Adversarial Attack on Deep Neural Networks from Image
Boundary [1.6589012298747952]
Adversarial Examples (AEs) can easily fool Deep Neural Networks (DNNs)
This study proposes an imperceptible adversarial attack that systemically attacks the input image boundary for finding the AEs.
arXiv Detail & Related papers (2023-08-29T14:41:05Z) - Robust-by-Design Classification via Unitary-Gradient Neural Networks [66.17379946402859]
The use of neural networks in safety-critical systems requires safe and robust models, due to the existence of adversarial attacks.
Knowing the minimal adversarial perturbation of any input x, or, equivalently, the distance of x from the classification boundary, allows evaluating the classification robustness, providing certifiable predictions.
A novel network architecture named Unitary-Gradient Neural Network is presented.
Experimental results show that the proposed architecture approximates a signed distance, hence allowing an online certifiable classification of x at the cost of a single inference.
arXiv Detail & Related papers (2022-09-09T13:34:51Z) - Verification-Aided Deep Ensemble Selection [4.290931412096984]
Deep neural networks (DNNs) have become the technology of choice for realizing a variety of complex tasks.
Even an imperceptible perturbation to a correctly classified input can lead to misclassification by a DNN.
This paper devises a methodology for identifying ensemble compositions that are less prone to simultaneous errors.
arXiv Detail & Related papers (2022-02-08T14:36:29Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Chance-Constrained Control with Lexicographic Deep Reinforcement
Learning [77.34726150561087]
This paper proposes a lexicographic Deep Reinforcement Learning (DeepRL)-based approach to chance-constrained Markov Decision Processes.
A lexicographic version of the well-known DeepRL algorithm DQN is also proposed and validated via simulations.
arXiv Detail & Related papers (2020-10-19T13:09:14Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
We propose a new perspective that relates dataset features to the distance of samples to the decision boundary.
This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets.
arXiv Detail & Related papers (2020-02-15T09:29:36Z) - Robustness of Bayesian Neural Networks to Gradient-Based Attacks [9.966113038850946]
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications.
We show that vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution.
We demonstrate that in the limit BNN posteriors are robust to gradient-based adversarial attacks.
arXiv Detail & Related papers (2020-02-11T13:03:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.