論文の概要: Dynamic Interactional And Cooperative Network For Shield Machine
- arxiv url: http://arxiv.org/abs/2211.10473v1
- Date: Thu, 17 Nov 2022 07:38:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 23:33:09.621888
- Title: Dynamic Interactional And Cooperative Network For Shield Machine
- Title(参考訳): シールドマシンの動的相互作用と協調ネットワーク
- Authors: Dazhi Gao, Rongyang Li, Hongbo Wang, Lingfeng Mao and Huansheng Ning
- Abstract要約: シールドマシン(英: Shield Machine、SM)は、トンネル掘削に用いられる複雑な機械装置である。
SM速度予測やSM異常検出などの制御端末のモデルが確立された。
- 参考スコア(独自算出の注目度): 2.4560340485988132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The shield machine (SM) is a complex mechanical device used for tunneling.
However, the monitoring and deciding were mainly done by artificial experience
during traditional construction, which brought some limitations, such as hidden
mechanical failures, human operator error, and sensor anomalies. To deal with
these challenges, many scholars have studied SM intelligent methods. Most of
these methods only take SM into account but do not consider the SM operating
environment. So, this paper discussed the relationship among SM, geological
information, and control terminals. Then, according to the relationship, models
were established for the control terminal, including SM rate prediction and SM
anomaly detection. The experimental results show that compared with baseline
models, the proposed models in this paper perform better. In the proposed
model, the R2 and MSE of rate prediction can reach 92.2\%, and 0.0064
respectively. The abnormal detection rate of anomaly detection is up to 98.2\%.
- Abstract(参考訳): シールドマシン (sm) はトンネル工事に用いられる複雑な機械装置である。
しかし、監視と決定は主に従来の建設中に人工的な経験によって行われ、隠れた機械的故障、人間の操作ミス、センサー異常などいくつかの制限がもたらされた。
これらの課題に対処するため、多くの学者がSMインテリジェントな手法を研究してきた。
これらの手法のほとんどはsmのみを考慮に入れるが、smの運用環境は考慮しない。
そこで本稿では,SM,地質情報,制御端末の関係について論じる。
そして, SM速度予測とSM異常検出を含む制御端末のモデルを構築した。
実験の結果, ベースラインモデルと比較して, 提案モデルの方が優れた性能を示した。
提案したモデルでは、レート予測のR2とMSEはそれぞれ92.2\%、0.0064に達する。
異常検出の異常検出率は98.2\%である。
関連論文リスト
- Understanding and Mitigating Bottlenecks of State Space Models through the Lens of Recency and Over-smoothing [56.66469232740998]
構造化状態空間モデル (Structured State Space Models, SSMs) は, 強い相対バイアスによって本質的に制限されていることを示す。
このバイアスにより、モデルが遠方の情報を思い出す能力が損なわれ、堅牢性の問題がもたらされる。
本研究では, 状態遷移行列の2つのチャネルをSSMで分極し, それぞれ0と1に設定し, 電流バイアスと過平滑化に同時に対処することを提案する。
論文 参考訳(メタデータ) (2024-12-31T22:06:39Z) - Spatial-Temporal Bearing Fault Detection Using Graph Attention Networks and LSTM [0.7864304771129751]
本稿では,グラフ注意ネットワーク(GAT)とLong Short-Term Memory(LSTM)ネットワークを組み合わせた新しい手法を提案する。
このアプローチは、センサデータ内の空間的および時間的依存関係を捕捉し、軸受故障検出の精度を向上させる。
論文 参考訳(メタデータ) (2024-10-15T12:55:57Z) - Mitigating Exposure Bias in Score-Based Generation of Molecular Conformations [6.442534896075223]
分子配座生成に用いるスコアベース生成モデルにおける露出バイアスを測定する手法を提案する。
我々は,DPMのみ用に設計された手法から適応した新しい補償アルゴリズム Input Perturbation (IP) を設計する。
GEOM-Drugsデータセットの最先端性能はGEOM-QM9と同等である。
論文 参考訳(メタデータ) (2024-09-21T04:54:37Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
長距離モデリングと線形効率の優れたマンバモデルが注目されている。
MambaADは、事前訓練されたエンコーダと(Locality-Enhanced State Space)LSSモジュールをマルチスケールで備えたMambaデコーダで構成されている。
提案したLSSモジュールは、並列カスケード(Hybrid State Space) HSSブロックとマルチカーネル畳み込み操作を統合し、長距離情報とローカル情報の両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-04-09T18:28:55Z) - AirIMU: Learning Uncertainty Propagation for Inertial Odometry [29.093168179953185]
ストラップダウン慣性測定装置(IMU)を用いた慣性計測(IO)は多くのロボット応用において重要である。
データ駆動手法により不確実性、特に非決定論的誤差を推定するハイブリッド手法であるAirIMUを提案する。
ハンドヘルドデバイス,車両,および262kmの軌道をカバーするヘリコプターなど,さまざまなプラットフォーム上での有効性を実証する。
論文 参考訳(メタデータ) (2023-10-07T17:08:22Z) - Practical Anomaly Detection over Multivariate Monitoring Metrics for
Online Services [29.37493773435177]
CMAnomalyは、協調マシンに基づく多変量モニタリングメトリクスの異常検出フレームワークである。
提案するフレームワークは,Huawei Cloudの大規模オンラインサービスシステムから収集した公開データと産業データの両方で広く評価されている。
最先端のベースラインモデルと比較して、CMAnomalyは平均F1スコア0.9494を達成し、ベースラインの6.77%から10.68%を上回り、10倍から20倍速く走る。
論文 参考訳(メタデータ) (2023-08-19T08:08:05Z) - Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection [78.734927709231]
異常検出器は、クエリー画像の未知の欠陥を検出し、ローカライズするために工業製造で広く使われている。
これらの検出器は異常のないサンプルで訓練され、ほとんどの通常のサンプルと区別された異常を成功させた。
しかし、ハードノーマルな例は、ほとんどの通常のサンプルから遠く離れており、しばしば既存の方法によって異常と誤認される。
論文 参考訳(メタデータ) (2023-03-28T17:54:56Z) - Prototypical Residual Networks for Anomaly Detection and Localization [80.5730594002466]
本稿では,PRN(Prototypeal Residual Network)というフレームワークを提案する。
PRNは、異常領域の分割マップを正確に再構築するために、異常領域と正常パターンの間の様々なスケールとサイズの特徴的残差を学習する。
異常を拡大・多様化するために,見かけの相違と外観の相違を考慮に入れた様々な異常発生戦略を提示する。
論文 参考訳(メタデータ) (2022-12-05T05:03:46Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。