論文の概要: Practical Anomaly Detection over Multivariate Monitoring Metrics for
Online Services
- arxiv url: http://arxiv.org/abs/2308.09937v1
- Date: Sat, 19 Aug 2023 08:08:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 18:59:04.052176
- Title: Practical Anomaly Detection over Multivariate Monitoring Metrics for
Online Services
- Title(参考訳): オンラインサービス用多変量モニタリングメトリクスによる実用的異常検出
- Authors: Jinyang Liu, Tianyi Yang, Zhuangbin Chen, Yuxin Su, Cong Feng, Zengyin
Yang, Michael R. Lyu
- Abstract要約: CMAnomalyは、協調マシンに基づく多変量モニタリングメトリクスの異常検出フレームワークである。
提案するフレームワークは,Huawei Cloudの大規模オンラインサービスシステムから収集した公開データと産業データの両方で広く評価されている。
最先端のベースラインモデルと比較して、CMAnomalyは平均F1スコア0.9494を達成し、ベースラインの6.77%から10.68%を上回り、10倍から20倍速く走る。
- 参考スコア(独自算出の注目度): 29.37493773435177
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As modern software systems continue to grow in terms of complexity and
volume, anomaly detection on multivariate monitoring metrics, which profile
systems' health status, becomes more and more critical and challenging. In
particular, the dependency between different metrics and their historical
patterns plays a critical role in pursuing prompt and accurate anomaly
detection. Existing approaches fall short of industrial needs for being unable
to capture such information efficiently. To fill this significant gap, in this
paper, we propose CMAnomaly, an anomaly detection framework on multivariate
monitoring metrics based on collaborative machine. The proposed collaborative
machine is a mechanism to capture the pairwise interactions along with feature
and temporal dimensions with linear time complexity. Cost-effective models can
then be employed to leverage both the dependency between monitoring metrics and
their historical patterns for anomaly detection. The proposed framework is
extensively evaluated with both public data and industrial data collected from
a large-scale online service system of Huawei Cloud. The experimental results
demonstrate that compared with state-of-the-art baseline models, CMAnomaly
achieves an average F1 score of 0.9494, outperforming baselines by 6.77% to
10.68%, and runs 10X to 20X faster. Furthermore, we also share our experience
of deploying CMAnomaly in Huawei Cloud.
- Abstract(参考訳): 現代のソフトウェアシステムが複雑さとボリュームの面で成長を続けるにつれて、システムの健康状態をプロファイリングする多変量監視メトリクスの異常検出がますます重要で困難になっていく。
特に、異なるメトリクスとその歴史的パターン間の依存関係は、迅速かつ正確な異常検出を追求する上で重要な役割を果たす。
既存のアプローチは、そのような情報を効率的に取得できない産業的ニーズに欠けています。
本稿では,この大きなギャップを埋めるために,協調機械に基づく多変量モニタリングメトリクスの異常検出フレームワークであるCMAnomalyを提案する。
提案するコラボレーティブマシンは,線形時間複雑性を伴う特徴次元と時間次元とを両立させる機構である。
コスト効率のよいモデルを使用して、監視メトリクスと、その履歴パターン間の依存性を、異常検出に利用することができる。
提案するフレームワークは,Huawei Cloudの大規模オンラインサービスシステムから収集した公開データと産業データの両方で広く評価されている。
実験の結果、最先端のベースラインモデルと比較して、CMAnomalyは平均F1スコア0.9494を達成し、ベースラインを6.77%から10.68%上回り、10倍から20倍速く走ることを示した。
さらに、huaweiクラウドにcmanomalyをデプロイした経験も共有しています。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies [4.806959791183183]
本稿では,産業用MSSにおける異常検出のための自己教師付き階層的コントラスト整合学習手法を提案する。
HCL-MTSADはマルチレイヤのコントラスト損失を発生させることで、データの一貫性とタイムスタンプと時間的関連を広範囲にマイニングすることができる。
HCL-MTSADの異常検出能力は、F1スコアの平均1.8%で最先端のベンチマークモデルを上回っている。
論文 参考訳(メタデータ) (2024-04-12T03:39:33Z) - MELODY: Robust Semi-Supervised Hybrid Model for Entity-Level Online Anomaly Detection with Multivariate Time Series [11.754433499581879]
欠陥のあるコード変更は、ターゲットサービスのパフォーマンスを低下させ、ダウンストリームサービスのカスケード障害を引き起こす可能性がある。
本稿では,デプロイメントにおける異常検出の問題について検討する。
我々は、エンティティレベルオンラインアノミクス検出のための新しいフレームワーク、半教師付きハイブリッドモデル(MELODY)を提案する。
論文 参考訳(メタデータ) (2024-01-18T19:02:41Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning
for Microservice System [24.2074235652359]
我々は,マルチモーダル学習を通じて利用可能なすべてのデータモダリティをシームレスに統合するMSTGADを提案する。
本研究では,異なるモーダル間の相関関係をモデル化するために,空間的および時間的注意機構を備えたトランスフォーマーベースニューラルネットワークを構築した。
これにより、リアルタイムで自動的かつ正確に異常を検出することができる。
論文 参考訳(メタデータ) (2023-10-07T06:28:41Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
本稿では,非教師付き時系列異常検出フレームワークを提案する。
我々は,畳み込みGated Recurrent Unit(ConvGRU)モデルに基づいて,共有変分オートエンコーダ(VAE)を学習するために,エッジに分散したトレーニングデータを残しておく。
3つの実世界のネットワークセンサーデータセットの実験は、他の最先端モデルに対する我々のアプローチの利点を示しています。
論文 参考訳(メタデータ) (2021-08-18T22:23:15Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。