論文の概要: Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics
- arxiv url: http://arxiv.org/abs/2211.10580v1
- Date: Sat, 19 Nov 2022 03:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 19:58:41.140125
- Title: Normal Transformer: Extracting Surface Geometry from LiDAR Points
Enhanced by Visual Semantics
- Title(参考訳): 正規変換器:視覚意味論によるLiDAR点からの表面形状の抽出
- Authors: Ancheng Lin, Jun Li
- Abstract要約: 本稿では,3次元点雲と2次元カラー画像から正規分布を推定する手法を提案する。
我々は,視覚的セマンティクスと3次元幾何データのハイブリッド情報を活用することを学ぶトランスフォーマーニューラルネットワークを開発した。
- 参考スコア(独自算出の注目度): 6.516912796655748
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-quality estimation of surface normal can help reduce ambiguity in many
geometry understanding problems, such as collision avoidance and occlusion
inference. This paper presents a technique for estimating the normal from 3D
point clouds and 2D colour images. We have developed a transformer neural
network that learns to utilise the hybrid information of visual semantic and 3D
geometric data, as well as effective learning strategies. Compared to existing
methods, the information fusion of the proposed method is more effective, which
is supported by experiments.
We have also built a simulation environment of outdoor traffic scenes in a 3D
rendering engine to obtain annotated data to train the normal estimator. The
model trained on synthetic data is tested on the real scenes in the KITTI
dataset. And subsequent tasks built upon the estimated normal directions in the
KITTI dataset show that the proposed estimator has advantage over existing
methods.
- Abstract(参考訳): 表面ノーマルの高品質な推定は、衝突回避や咬合推定のような多くの幾何学的理解問題において曖昧さを減らすのに役立つ。
本稿では,3次元点雲と2次元カラー画像から正規分布を推定する手法を提案する。
本研究では,視覚意味と3次元幾何学データのハイブリッド情報と効果的な学習戦略を活用すべく,トランスフォーマーニューラルネットワークを開発した。
既存の手法と比較して,提案手法の情報融合はより効果的であり,実験によって支援されている。
また、3次元レンダリングエンジンに屋外交通シーンのシミュレーション環境を構築し、通常の推定器を訓練するための注釈付きデータを得た。
合成データに基づいてトレーニングされたモデルは、KITTIデータセットの実際のシーンでテストされる。
KITTIデータセットの通常の方向を推定したタスクは、提案した推定器が既存の手法よりも優れていることを示す。
関連論文リスト
- The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods [10.265865092323041]
本稿では,オックスフォードの有名なランドマーク周辺で収集された大規模マルチモーダルデータセットを紹介する。
また、ローカライゼーション、再構築、新規ビュー合成を含むタスクのベンチマークも作成する。
我々のデータセットとベンチマークは、放射場法とSLAMシステムのより良い統合を容易にすることを意図している。
論文 参考訳(メタデータ) (2024-11-15T19:43:24Z) - LLMI3D: MLLM-based 3D Perception from a Single 2D Image [77.13869413871028]
マルチモーダルな大言語モデル(MLLM)は、一般的な能力では優れているが、3Dタスクでは性能が劣る。
本稿では,3次元局所空間物体認識の弱さ,テキストに基づく幾何学的数値出力の低さ,カメラ焦点変動の処理能力の低下に対する解決策を提案する。
我々は,事前学習したMLLMに対してパラメータ効率の良い微調整を採用し,強力な3次元知覚MLLMであるLLMI3Dを開発した。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Towards Unified 3D Object Detection via Algorithm and Data Unification [70.27631528933482]
我々は、最初の統一型マルチモーダル3Dオブジェクト検出ベンチマークMM-Omni3Dを構築し、上記のモノクロ検出器をマルチモーダルバージョンに拡張する。
設計した単分子・多モード検出器をそれぞれUniMODEとMM-UniMODEと命名した。
論文 参考訳(メタデータ) (2024-02-28T18:59:31Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - Uncertainty Guided Policy for Active Robotic 3D Reconstruction using
Neural Radiance Fields [82.21033337949757]
本稿では,物体の暗黙のニューラル表現の各光線に沿ったカラーサンプルの重量分布のエントロピーを計算した線量不確実性推定器を提案する。
提案した推定器を用いた新しい視点から, 基礎となる3次元形状の不確かさを推測することが可能であることを示す。
ニューラルラディアンス場に基づく表現における線量不確実性によって導かれる次ベクター選択ポリシーを提案する。
論文 参考訳(メタデータ) (2022-09-17T21:28:57Z) - Large-Scale 3D Semantic Reconstruction for Automated Driving Vehicles
with Adaptive Truncated Signed Distance Function [9.414880946870916]
本稿では,LiDARとカメラセンサを用いた新しい3次元再構成と意味マッピングシステムを提案する。
Adaptive Truncated Functionは表面を暗黙的に記述するために導入され、異なるLiDAR点間隔を扱うことができる。
各三角形メッシュに対して最適なセマンティッククラスを推定するために,最適な画像パッチ選択戦略を提案する。
論文 参考訳(メタデータ) (2022-02-28T15:11:25Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3Dオブジェクト検出は、自動運転のシナリオにおいて新たな課題となっている。
以前の作業では、プロジェクションベースまたはボクセルベースのモデルを使用して3Dポイントクラウドを処理していた。
本稿では,意味情報と空間情報の同時利用が可能なStereo RGBおよびDeeper LIDARフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-09T11:19:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。