Decidability of fully quantum nonlocal games with noisy maximally
entangled states
- URL: http://arxiv.org/abs/2211.10613v5
- Date: Wed, 26 Apr 2023 09:44:01 GMT
- Title: Decidability of fully quantum nonlocal games with noisy maximally
entangled states
- Authors: Minglong Qin, Penghui Yao
- Abstract summary: This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled states.
We prove that there is a computable upper bound on the copies of noisy maximally entangled states for the players to win a fully quantum nonlocal game with a probability arbitrarily close to the quantum value.
- Score: 5.076419064097734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the decidability of fully quantum nonlocal games with
noisy maximally entangled states. Fully quantum nonlocal games are a
generalization of nonlocal games, where both questions and answers are quantum
and the referee performs a binary POVM measurement to decide whether they win
the game after receiving the quantum answers from the players. The quantum
value of a fully quantum nonlocal game is the supremum of the probability that
they win the game, where the supremum is taken over all the possible entangled
states shared between the players and all the valid quantum operations
performed by the players. The seminal work $\mathrm{MIP}^*=\mathrm{RE}$ implies
that it is undecidable to approximate the quantum value of a fully nonlocal
game. This still holds even if the players are only allowed to share
(arbitrarily many copies of) maximally entangled states. This paper
investigates the case that the shared maximally entangled states are noisy. We
prove that there is a computable upper bound on the copies of noisy maximally
entangled states for the players to win a fully quantum nonlocal game with a
probability arbitrarily close to the quantum value. This implies that it is
decidable to approximate the quantum values of these games. Hence, the hardness
of approximating the quantum value of a fully quantum nonlocal game is not
robust against the noise in the shared states.
This paper is built on the framework for the decidability of non-interactive
simulations of joint distributions and generalizes the analogous result for
nonlocal games. We extend the theory of Fourier analysis to the space of
super-operators and prove several key results including an invariance principle
and a dimension reduction for super-operators. These results are interesting in
their own right and are believed to have further applications.
Related papers
- A bound on the quantum value of all compiled nonlocal games [49.32403970784162]
A cryptographic compiler converts any nonlocal game into an interactive protocol with a single computationally bounded prover.
We establish a quantum soundness result for all compiled two-player nonlocal games.
arXiv Detail & Related papers (2024-08-13T08:11:56Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Implementing 2-qubit pseudo-telepathy games on noisy intermediate scale
quantum computers [0.0]
Mermin-Peres like proofs of quantum contextuality can furnish non-local games with a guaranteed quantum strategy.
We show that the quantumness of these games are almost revealed when we play them on the IBM Quantum Experience.
arXiv Detail & Related papers (2023-10-11T12:47:12Z) - On the power of quantum entanglement in multipartite quantum XOR games [3.655021726150368]
In particular, quantum entanglement can be a much more powerful resource than local operations and classical communication to play these games.
This result shows a strong contrast to the bipartite case, where it was recently proved that the entangled bias is always upper bounded by a universal constant times the one-way classical communication bias.
arXiv Detail & Related papers (2023-02-23T06:26:37Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Experimental Demonstration of Quantum Pseudotelepathy [8.366359388178546]
We report a faithful experimental demonstration of quantum pseudotelepathy via playing the non-local version of Mermin-Peres magic square game.
We adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the orbital angular momentum degrees of freedom.
Our results show that quantum players can simultaneously win all the queries over any classical strategy.
arXiv Detail & Related papers (2022-06-24T02:35:55Z) - On the relation between completely bounded and $(1,cb)$-summing maps
with applications to quantum XOR games [65.51757376525798]
We show that given a linear map from a general operator space into the dual of a C$*$-algebra, its completely bounded norm is upper bounded by a universal constant times its $(''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
arXiv Detail & Related papers (2021-12-09T21:06:52Z) - Playing quantum nonlocal games with six noisy qubits on the cloud [0.0]
Nonlocal games are extensions of Bell inequalities, aimed at demonstrating quantum advantage.
We consider the minimal implementation of the nonlocal game proposed in Science 362, 308.
We test this game by preparing a 6-qubit cluster state using quantum computers on the cloud by IBM, Ionq, and Honeywell.
arXiv Detail & Related papers (2021-05-11T18:00:08Z) - Surpassing the Classical Limit in Magic Square Game with Distant Quantum
Dots Coupled to Optical Cavities [0.0]
We propose an experimental setup for quantum computation with quantum dots inside optical cavities.
Considering various physical imperfections of our setup, we first show that the MSG can be implemented with the current technology.
We show that our work gives rise to a new version of the game. That is, if the referee has information on the physical realization and strategy of the players, he can bias the game through filtered randomness and increase his winning probability.
arXiv Detail & Related papers (2020-11-03T05:45:06Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.