論文の概要: Normalizing Flows for Human Pose Anomaly Detection
- arxiv url: http://arxiv.org/abs/2211.10946v1
- Date: Sun, 20 Nov 2022 11:02:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 18:54:47.056425
- Title: Normalizing Flows for Human Pose Anomaly Detection
- Title(参考訳): 人間の姿勢異常検出のための正規化フロー
- Authors: Or Hirschorn, Shai Avidan
- Abstract要約: 我々は,人間のポーズの異常検出に問題を蒸留し,その結果に影響を及ぼす外観などの異なるパラメータのリスクを低減する。
我々のモデルは人間のポーズグラフのシーケンスを直接処理し、非常に軽量である(sim1K$ parameters)。
我々は,教師なし上海技術データセットと教師なしUB正規データセットという,2つの異常検出ベンチマークの技術的結果について報告する。
- 参考スコア(独自算出の注目度): 20.191456827448736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video anomaly detection is an ill-posed problem because it relies on many
parameters such as appearance, pose, camera angle, background, and more. We
distill the problem to anomaly detection of human pose, thus reducing the risk
of nuisance parameters such as appearance affecting the result. Focusing on
pose alone also has the side benefit of reducing bias against distinct minority
groups. Our model works directly on human pose graph sequences and is
exceptionally lightweight ($\sim1K$ parameters), capable of running on any
machine able to run the pose estimation with negligible additional resources.
We leverage the highly compact pose representation in a normalizing flows
framework, which we extend to tackle the unique characteristics of
spatio-temporal pose data and show its advantages in this use case. Our
algorithm uses normalizing flows to learn a bijective mapping between the pose
data distribution and a Gaussian distribution, using spatio-temporal graph
convolution blocks. The algorithm is quite general and can handle training data
of only normal examples, as well as a supervised dataset that consists of
labeled normal and abnormal examples. We report state-of-the-art results on two
anomaly detection benchmarks - the unsupervised ShanghaiTech dataset and the
recent supervised UBnormal dataset.
- Abstract(参考訳): 映像の異常検出は、外観、ポーズ、カメラアングル、背景など多くのパラメータに依存するため、不適切な問題である。
そこで我々は,人間のポーズの異常検出に問題を蒸留し,その結果に影響を与える外観などのニュアンスパラメータのリスクを低減する。
ポーズのみにフォーカスすることは、異なる少数派グループに対する偏見を減らすという副作用もある。
私たちのモデルは、人間のポーズグラフ列に直接作用し、非常に軽量(\sim1k$パラメータ)で、不要な追加リソースでポーズ推定を実行可能な任意のマシン上で実行できます。
我々は,正規化フローフレームワークにおいて,高度にコンパクトなポーズ表現を活用し,時空間的ポーズデータのユニークな特徴に取り組み,その利点を示す。
提案アルゴリズムは,時空間グラフ畳み込みブロックを用いて,ポーズデータ分布とガウス分布との双対写像を正規化フローを用いて学習する。
アルゴリズムは非常に一般的で、通常の例のみのトレーニングデータや、ラベル付き正規例と異常例からなる教師付きデータセットを扱うことができる。
我々は,教師なし上海技術データセットと教師なしUB正規データセットという,2つの異常検出ベンチマークの最先端結果を報告する。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection [2.924868086534434]
ポーズベースの異常検出(Pose-based anomaly detection)は、ビデオフレームから抽出された人間のポーズを調べることによって、異常な出来事や行動を検出するビデオ分析技術である。
本研究では、ポーズに基づく異常検出の難しさをよりよく理解するために、2つのよく知られたビデオ異常データセットの特徴を分析し、定量化する。
これらの実験は、ポーズベースの異常検出と現在利用可能なデータセットをより理解する上で有益であると考えています。
論文 参考訳(メタデータ) (2023-03-09T18:09:45Z) - Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection [4.873362301533825]
本稿では,異常検出のためのLossy Causal Temporal Convolutional Neural Network Autoencoderを提案する。
我々のフレームワークは, 速度歪み損失とエントロピーボトルネックを用いて, タスクの圧縮潜在表現を学習する。
論文 参考訳(メタデータ) (2022-12-05T14:29:16Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Discriminative-Generative Dual Memory Video Anomaly Detection [81.09977516403411]
近年,ビデオ異常検出(VAD)には,トレーニングプロセス中に通常のデータに代えて,いくつかの異常を使おうと試みている。
本稿では,いくつかの異常を生かしてデータの不均衡を解決するために,識別生成型デュアルメモリ(dream)異常検出モデルを提案する。
論文 参考訳(メタデータ) (2021-04-29T15:49:01Z) - Modeling the Distribution of Normal Data in Pre-Trained Deep Features
for Anomaly Detection [2.9864637081333085]
画像中の異常検出(AD)は、標準からかなり逸脱した画像や画像のサブ構造を特定することを指す。
本研究では,大きな自然画像データセット上での識別モデルにより学習された深い特徴表現が,正規性を記述するのに適していることを示す。
論文 参考訳(メタデータ) (2020-05-28T16:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。