Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies
- URL: http://arxiv.org/abs/2211.10957v1
- Date: Sun, 20 Nov 2022 11:47:33 GMT
- Title: Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies
- Authors: Malte Mosbach, Sven Behnke
- Abstract summary: We present a reinforcement learning framework that learns the interactive grasping of various geometrically distinct real-world objects.
Videos of learned interactive policies are available at https://maltemosbach.org/io/geometry_aware_grasping_policies.
- Score: 29.998917158604694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grasping objects of different shapes and sizes - a foundational, effortless
skill for humans - remains a challenging task in robotics. Although model-based
approaches can predict stable grasp configurations for known object models,
they struggle to generalize to novel objects and often operate in a
non-interactive open-loop manner. In this work, we present a reinforcement
learning framework that learns the interactive grasping of various
geometrically distinct real-world objects by continuously controlling an
anthropomorphic robotic hand. We explore several explicit representations of
object geometry as input to the policy. Moreover, we propose to inform the
policy implicitly through signed distances and show that this is naturally
suited to guide the search through a shaped reward component. Finally, we
demonstrate that the proposed framework is able to learn even in more
challenging conditions, such as targeted grasping from a cluttered bin.
Necessary pre-grasping behaviors such as object reorientation and utilization
of environmental constraints emerge in this case. Videos of learned interactive
policies are available at https://maltemosbach.github.
io/geometry_aware_grasping_policies.
Related papers
- Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange [50.45953583802282]
We introduce a novel self-supervised learning (SSL) strategy for point cloud scene understanding.
Our approach leverages both object patterns and contextual cues to produce robust features.
Our experiments demonstrate the superiority of our method over existing SSL techniques.
arXiv Detail & Related papers (2024-04-11T06:39:53Z) - CORN: Contact-based Object Representation for Nonprehensile Manipulation of General Unseen Objects [1.3299507495084417]
Nonprehensile manipulation is essential for manipulating objects that are too thin, large, or otherwise ungraspable in the wild.
We propose a novel contact-based object representation and pretraining pipeline to tackle this.
arXiv Detail & Related papers (2024-03-16T01:47:53Z) - Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects [18.342569823885864]
Teacher-Augmented Policy Gradient (TAPG) is a novel two-stage learning framework that synergizes reinforcement learning and policy distillation.
TAPG facilitates guided, yet adaptive, learning of a sensorimotor policy, based on object segmentation.
Our trained policies adeptly grasp a wide variety of objects from cluttered scenarios in simulation and the real world based on human-understandable prompts.
arXiv Detail & Related papers (2024-03-15T10:48:16Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
We learn a sequence of actions that utilize the environment to change the object's pose.
Our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment.
We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace.
arXiv Detail & Related papers (2023-10-26T21:28:23Z) - Learning Generalizable Manipulation Policies with Object-Centric 3D
Representations [65.55352131167213]
GROOT is an imitation learning method for learning robust policies with object-centric and 3D priors.
It builds policies that generalize beyond their initial training conditions for vision-based manipulation.
GROOT's performance excels in generalization over background changes, camera viewpoint shifts, and the presence of new object instances.
arXiv Detail & Related papers (2023-10-22T18:51:45Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
We propose a novel paradigm that effectively leverages language-reasoning segmentation mask generated by internet-scale foundation models.
Our approach can effectively and robustly perceive object pose and enable sample-efficient generalization learning.
Demos can be found in our submitted video, and more comprehensive ones can be found in link1 or link2.
arXiv Detail & Related papers (2023-06-09T07:22:12Z) - Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task
Learning [108.08083976908195]
We show that policies learned by existing reinforcement learning algorithms can in fact be generalist.
We show that a single generalist policy can perform in-hand manipulation of over 100 geometrically-diverse real-world objects.
Interestingly, we find that multi-task learning with object point cloud representations not only generalizes better but even outperforms single-object specialist policies.
arXiv Detail & Related papers (2021-11-04T17:59:56Z) - Continuous Surface Embeddings [76.86259029442624]
We focus on the task of learning and representing dense correspondences in deformable object categories.
We propose a new, learnable image-based representation of dense correspondences.
We demonstrate that the proposed approach performs on par or better than the state-of-the-art methods for dense pose estimation for humans.
arXiv Detail & Related papers (2020-11-24T22:52:15Z) - SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object
Manipulation [15.477950393687836]
We present SoftGym, a set of open-source simulated benchmarks for manipulating deformable objects.
We evaluate a variety of algorithms on these tasks and highlight challenges for reinforcement learning algorithms.
arXiv Detail & Related papers (2020-11-14T03:46:59Z) - Learning visual policies for building 3D shape categories [130.7718618259183]
Previous work in this domain often assembles particular instances of objects from known sets of primitives.
We learn a visual policy to assemble other instances of the same category.
Our visual assembly policies are trained with no real images and reach up to 95% success rate when evaluated on a real robot.
arXiv Detail & Related papers (2020-04-15T17:29:10Z) - Learning Rope Manipulation Policies Using Dense Object Descriptors
Trained on Synthetic Depth Data [32.936908766549344]
We present an approach that learns point-pair correspondences between initial and goal rope configurations.
In 50 trials of a knot-tying task with the ABB YuMi Robot, the system achieves a 66% knot-tying success rate from previously unseen configurations.
arXiv Detail & Related papers (2020-03-03T23:43:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.