論文の概要: Boosting the Transferability of Adversarial Attacks with Global Momentum
Initialization
- arxiv url: http://arxiv.org/abs/2211.11236v1
- Date: Mon, 21 Nov 2022 07:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 22:37:42.370566
- Title: Boosting the Transferability of Adversarial Attacks with Global Momentum
Initialization
- Title(参考訳): グローバルモーメント初期化による敵攻撃の伝達性向上
- Authors: Jiafeng Wang, Zhaoyu Chen, Kaixun Jiang, Dingkang Yang, Lingyi Hong,
Yan Wang, Wenqiang Zhang
- Abstract要約: 敵対的な例は 人間の目に見えない摂動を 良心的な入力に結びつける
逆の例では、異なるモデルの下で転送可能性を示し、実用的なブラックボックス攻撃が実現可能である。
本稿では,グローバルモメンタム初期化手法を提案する。
- 参考スコア(独自算出の注目度): 13.730799249889946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks are vulnerable to adversarial examples, which attach
human invisible perturbations to benign inputs. Simultaneously, adversarial
examples exhibit transferability under different models, which makes practical
black-box attacks feasible. However, existing methods are still incapable of
achieving desired transfer attack performance. In this work, from the
perspective of gradient optimization and consistency, we analyze and discover
the gradient elimination phenomenon as well as the local momentum optimum
dilemma. To tackle these issues, we propose Global Momentum Initialization (GI)
to suppress gradient elimination and help search for the global optimum.
Specifically, we perform gradient pre-convergence before the attack and carry
out a global search during the pre-convergence stage. Our method can be easily
combined with almost all existing transfer methods, and we improve the success
rate of transfer attacks significantly by an average of 6.4% under various
advanced defense mechanisms compared to state-of-the-art methods. Eventually,
we achieve an attack success rate of 95.4%, fully illustrating the insecurity
of existing defense mechanisms.
- Abstract(参考訳): 深層ニューラルネットワークは、人間の目に見えない摂動を良心的な入力に結びつける敵の例に弱い。
同時に、敵対的な例は異なるモデルの下で転送可能性を示し、実用的なブラックボックス攻撃を可能にする。
しかし、既存の手法では所望の転送攻撃性能を達成できない。
本研究では,勾配最適化と一貫性の観点から,局所運動量最適ジレンマと同様に勾配除去現象を解析・発見する。
これらの問題に対処するため,我々は,勾配除去を抑制し,グローバル最適探索を支援するグローバルモーメント初期化 (gi) を提案する。
具体的には,攻撃前にグラデーションプリコンバージェンスを行い,プレコンバージェンス段階でグローバルサーチを行う。
本手法は, 既存手法のほぼすべてと容易に組み合わせることができ, 最新手法と比較して, 様々な防御機構下での移動攻撃の成功率を平均6.4%向上させる。
最終的に、攻撃成功率は95.4%に達し、既存の防御機構の安全性を十分に示している。
関連論文リスト
- Improving Adversarial Transferability with Neighbourhood Gradient Information [20.55829486744819]
ディープニューラルネットワーク(DNN)は、敵の例に影響を受けやすいため、パフォーマンスが著しく低下する。
本研究は、この性能ギャップを狭めるために、敵の例の転送可能性を高めることに焦点を当てる。
事例追跡と多重マスク戦略を取り入れたNGI-Attackを提案する。
論文 参考訳(メタデータ) (2024-08-11T10:46:49Z) - Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation [49.480978190805125]
転送攻撃はブラックボックスアプリケーションに大きな関心を惹きつける。
既存の作業は、本質的に単一のレベルの目的 w.r.t. シュロゲートモデルを直接最適化する。
本稿では,上位レベル(UL)と下位レベル(LL)のサロゲート攻撃とのネスト関係を明示的に再構築する2レベル最適化手法を提案する。
論文 参考訳(メタデータ) (2024-06-04T07:45:27Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - Enhancing the Self-Universality for Transferable Targeted Attacks [88.6081640779354]
本手法は,高次対角的摂動が標的攻撃に対してより伝達しやすい傾向にあることを示す。
異なる画像上の摂動を最適化する代わりに、異なる領域を最適化して自己ユニバーシティを実現することで、余分なデータを排除することができる。
特徴的類似性欠如により,本手法は,良性画像よりも対向性摂動の特徴が支配的となる。
論文 参考訳(メタデータ) (2022-09-08T11:21:26Z) - Improving Adversarial Transferability with Spatial Momentum [10.460296317901662]
ディープニューラルネットワーク(DNN)は、敵の例に対して脆弱である。
モメンタムベースアタック(MI-FGSM)は、転送性を改善するための効果的な方法の一つである。
本研究では,空間的モメンタム反復FGSM攻撃法を提案する。
論文 参考訳(メタデータ) (2022-03-25T07:03:17Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Enhancing the Transferability of Adversarial Attacks through Variance
Tuning [6.5328074334512]
反復勾配に基づく攻撃手法のクラスを強化するための分散チューニングと呼ばれる新しい方法を提案する。
標準のImageNetデータセットを用いた実験結果から,勾配に基づく敵攻撃の転送性を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2021-03-29T12:41:55Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
深層学習モデルは、人間の知覚できない摂動を良心的なイメージに加えることで、敵の例に弱い。
さまざまな運動量反復勾配に基づく方法が逆転性を改善するのに有効であることが示されている。
本稿では,逆伝達性をさらに高めるために,運動量反復勾配に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-19T03:10:32Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。