Low-depth Circuit Implementation of Parity Constraints for Quantum Optimization
- URL: http://arxiv.org/abs/2211.11287v3
- Date: Mon, 15 Jul 2024 10:55:07 GMT
- Title: Low-depth Circuit Implementation of Parity Constraints for Quantum Optimization
- Authors: Josua Unger, Anette Messinger, Benjamin E. Niehoff, Michael Fellner, Wolfgang Lechner,
- Abstract summary: We present a construction for circuits with low gate count and depth.
The circuits can be implemented on any quantum device with nearest-neighbor connectivity on a square-lattice.
We find an upper bound for the circuit depth which is independent of the system size.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a construction for circuits with low gate count and depth, implementing three- and four-body Pauli-Z product operators as they appear in the form of plaquette-shaped constraints in QAOA when using the parity mapping. The circuits can be implemented on any quantum device with nearest-neighbor connectivity on a square-lattice, using only one gate type and one orientation of two-qubit gates at a time. We find an upper bound for the circuit depth which is independent of the system size. The procedure is readily adjustable to hardware-specific restrictions, such as a minimum required spatial distance between simultaneously executed gates, or gates only being simultaneously executable within a subset of all the qubits, for example a single line.
Related papers
- On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level
Architectures [0.0]
We present direct-to-pulse implementations of several three-qubit gates, synthesized via optimal control, for compilation of three-qubit gates onto a superconducting-based architecture.
We demonstrate strategies that temporarily use higher level states to perform Toffoli gates and always use higher level states to improve fidelities for quantum circuits.
arXiv Detail & Related papers (2023-03-24T15:28:06Z) - Direct pulse-level compilation of arbitrary quantum logic gates on superconducting qutrits [36.30869856057226]
We demonstrate any arbitrary qubit and qutrit gate can be realized with high-fidelity, which can significantly reduce the length of a gate sequence.
We show that optimal control gates are robust to drift for at least three hours and that the same calibration parameters can be used for all implemented gates.
arXiv Detail & Related papers (2023-03-07T22:15:43Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Efficient Quantum Circuit Design with a Standard Cell Approach, with an Application to Neutral Atom Quantum Computers [45.66259474547513]
We design quantum circuits by using the standard cell approach borrowed from classical circuit design.
We present evidence that, when compared with automatic routing methods, our layout-aware routers are significantly faster and achieve shallower 3D circuits.
arXiv Detail & Related papers (2022-06-10T10:54:46Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Fast multi-qubit gates through simultaneous two-qubit gates [0.5949967357689445]
Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity.
One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multi-qubit gates.
We show that such multi-qubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits.
arXiv Detail & Related papers (2021-08-25T17:24:31Z) - Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable
coupler [40.456646238780195]
Two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation.
We present a systematic approach that goes beyond the dispersive approximation to exploit the engineered level structure of the coupler and optimize its control.
We experimentally demonstrate CZ and $ZZ$-free iSWAP gates with two-qubit interaction fidelities of $99.76 pm 0.07$% and $99.87 pm 0.23$%, respectively.
arXiv Detail & Related papers (2020-11-02T19:09:43Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
arXiv Detail & Related papers (2020-07-14T04:09:52Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.